Citation: Wang Lihui, Bai Suozhu, Li Dongyong, Zhou Hong. Effect of Structure Modification of Benzothiadiazole Acceptor Unit on the D-A-D-A-D Typed Oligothiophene Based Donor Materials for Organic Small Molecules Solar Cells: A Theoretical Study[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 748-755. doi: 10.6023/cjoc201907032 shu

Effect of Structure Modification of Benzothiadiazole Acceptor Unit on the D-A-D-A-D Typed Oligothiophene Based Donor Materials for Organic Small Molecules Solar Cells: A Theoretical Study

  • Corresponding author: Wang Lihui, wanglihuihui@sina.com
  • Received Date: 23 July 2019
    Revised Date: 1 October 2019
    Available Online: 13 November 2019

    Fund Project: Project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2017MS0208) and the Inner Mongolia University for Nationalities (IMUN) Doctoral Research Start-up Foundation (No. BS450)the Inner Mongolia University for Nationalities (IMUN) Doctoral Research Start-up Foundation No.BS450Project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China No.2017MS0208

Figures(5)

  • Four D-A-D-A-D structured organic small molecules (OSMs) DOBT-8T, BT-8T, FBT-8T and FFBT-8T have been designed for organic solar cells, which contain tetrathiophene as the core donor unit, bithiophene as the termial donor unit, combining different electron-withdrawing fragments DOBT, BT, FBT and FFBT as acceptor unit, respectively. The designed four OSMs were analyzed using density functional theory (DFT) and time dependent-DFT (TDDFT) calculations at B3LYP/6-31G(d) level. The effects of structure modification of benzothiadiazole acceptor unit on modulating the electron-donating ability of OSMs were fully investigated. Results showed that the geometrical structure, the band-gap, HOMO/LUMO energy levels, orbital spatial distribution, energetic driving force, open-circuit voltage and NPA atomic charge of these OSMs can be systematically altered by varying the electron-withdrawing properties with different benzothiadiazole acceptor units. Compared to other OSMs, FBT-8T displayed the more narrowed Eg and relatively deeper HOMO level with FBT as acceptor. FFBT-8T exhibited the most deep-lying HOMO level of the four designed OSMs and suitable Eg value by using FFBT as acceptor. The power conversion efficiencies (PCEs) of ca. 4.7% and ca. 5.2% were achieved by the photovoltaic devices based on FBT-8T:PC61BM and FFBT-8T:PC61BM systems, respectively, predicting with Scharber models. On the basis of these results, FBT-8T and FFBT-8T as potential OSMs donor materials for high-efficiency organic bulk hetero-junction solar cell were proposed.
  • 加载中
    1. [1]

      Cui C., Guo X., Min J., Guo B., Cheng X., Zhang M., Brabec C. J., Li Y.Adv. Mater. 2015, 27, 7469.  doi: 10.1002/adma.201503815

    2. [2]

      Zhao J., Li Y., Yang G., Jiang K., Lin H., Ade H., Ma W., Yan H.Nat. Energy 2016, 1, 1.
       

    3. [3]

      Wan J., Xu X., Zhang G., Li Y., Peng Q.Energy Environ. Sci. 2017, 10, 1739.  doi: 10.1039/C7EE00805H

    4. [4]

      Geng Y., Tang A., Tajima K., Zeng Q., Zhou E.J. Mater. Chem. A 2019, 7, 64.  doi: 10.1039/C8TA09383K

    5. [5]

      Zhou Z., Xu S., Liu W., Zhang C., Hu Q., Liu F.J. Mater. Chem. A 2017, 5, 3425.  doi: 10.1039/C6TA10559A

    6. [6]

      Du J., Biewer M. C., Stefan M. C.J. Mater. Chem. A 2016, 4, 15771.  doi: 10.1039/C6TA06241E

    7. [7]

      Cheng M., Chen C., Yang X., Huang J., Zhang F., Xu B., Sun L.-C.Chem. Mater. 2015, 27, 1808.  doi: 10.1021/acs.chemmater.5b00001

    8. [8]

      (a) Wang L.-H., Wang L.-J., Xie B., Ji C.-Y., Li Y.-Q.Dye Pigm. 2017, 140, 203.
      (b) Wang L., Yin L., Ji C., Zhang Y., Gao H., Li Y.Org. Electron. 2014, 15, 1138.

    9. [9]

      Wang J.-L., Zhang H.-J., Liu S., Liu K.-K., Liu F., Wu H.-B., Cao Y.Sol. RRL 2018, 2, 1800.
       

    10. [10]

      Ni W., Wan X., Li M., Wang Y., Chen Y.Chem. Commun. 2015, 51, 4936.  doi: 10.1039/C4CC09758K

    11. [11]

      Cho A., Song C. E., Lee S. K., Shin W. S., Lim E.J. Mater. Sci. 2016, 51, 6770.  doi: 10.1007/s10853-016-9964-x

    12. [12]

      (a) Chen R., Wang Y., Chen T., Li H., Zheng C., Yuan K., Wang Z., Tao Y., Zheng C., Huang W.J. Phys. Chem. B 2015, 119, 583.
      (b) Franco F. C., Padama A. A. B.Polymer 2016, 97, 55.
      (c) McCormick T. M., Bridges C. R., Carrera E. I., DiCarmine P. M., Gibson G.-L., Hollinger J., Kozycz L. M., Seferos D. S.Macromolecules 2013, 46, 3879.

    13. [13]

      (a) Becke A. D.J. Chem. Phys. 1993, 98, 1372.
      (b) Lee C., Yang W., Parr R. G.Phys. Rev. B 1988, 37, 785.
      (c) Becke A. D.Phys. Rev. A 1988, 38, 3098.

    14. [14]

      Lin L.-Y., Lu C.-W., Huang W.-C., Chen Y.-H., Lin H.-W., Wong K.-T.Org. Lett. 2011, 13, 4962.  doi: 10.1021/ol2021077

    15. [15]

      Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B. G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A.Jr.; Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Kobayashi V. N. R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J.E; Cross J. B., Bakken V., Jaramillo C. J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R.L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.Gaussian 09, Evision A.01, Gaussian, Inc., Wallingford CT, 2009.

    16. [16]

      (a) Rutledge L. R., McAfee S. M., Welch G. C.J. Phys. Chem. A 2014, 118, 7939.
      (b) Sahu H., Panda A. N.J. Phys. Chem. C 2015, 119, 22855.

    17. [17]

      Wang Z., Song C., Li J., Li P., Zhang H.J. Phys. Chem. C 2018, 123, 1069.
       

    18. [18]

      (a) Frost J. M., Faist M. A., Nelson J.Adv. Mater. 2010, 22, 4881.
      (b) Zhang G., Musgrave C. B.J. Phys. Chem. A 2007, 111, 1554.

    19. [19]

      Wang L., Yin L., Ji C., Li Y.Dye Pigm. 2015, 118, 37.  doi: 10.1016/j.dyepig.2015.02.017

    20. [20]

      Foster J. P., Weinhold F.J. Am. Chem. Soc. 1980, 102, 7211.  doi: 10.1021/ja00544a007

    21. [21]

      Irfan M., Iqbal J., Sadaf S., Eliasson B., Rana U. A., Ud-din Khan S., Ayub K.Int. J. Quantum Chem. 2017, 117, 25363.  doi: 10.1002/qua.25363

    22. [22]

      Cui Y., Li P., Song C., Zhang H.J. Phys. Chem. C 2016, 120, 28939.  doi: 10.1021/acs.jpcc.6b09927

    23. [23]

      Zhang L., Shen W., He R., Tang X., Yang Y., Li M.Mater. Chem. Phys. 2016, 175, 13.  doi: 10.1016/j.matchemphys.2016.01.062

    24. [24]

      Sun F., Jin R.Arab. J. Chem. 2017, 10, S2988.  doi: 10.1016/j.arabjc.2013.11.037

    25. [25]

      Liu X., He R., Shen W., Li M.J. Power Sources 2014, 245, 217.  doi: 10.1016/j.jpowsour.2013.06.137

    26. [26]

      Zhao Z. W., Pan Q. Q., Li S. B., Duan Y. A., Geng Y., Zhang M., Su Z. M.J. Mol. Graphics Modell. 2017, 77, 9.  doi: 10.1016/j.jmgm.2017.07.027

    27. [27]

      Zhao Z.-W., Pan Q.-Q., Wu S.-X., Wu Y., Zhang M., Zhao L., Su Z. M.Theor. Chem. Acc. 2018, 137, 1.  doi: 10.1007/s00214-017-2177-9

    28. [28]

      Wang J.-L., Liu K.-K., Yan J., Wu Z., Liu F., Xiao F., Chang Z.-F., Wu H.-B., Cao Y., Russell T. P.J. Am. Chem. Soc. 2016, 138, 7687.  doi: 10.1021/jacs.6b03495

    29. [29]

      Pan Q.-Q., Li S.-B., Wu Y., Zhang J., Li H.-B., Geng Y., Su Z.-M.New J. Chem. 2013, 1, 1.

    30. [30]

      Bourass M., Touimi B. A., Hamidi M., Benzakour M., McHarfi M., Sfaira M.J. Saudi Chem. Soc. 2016, 20, S415.  doi: 10.1016/j.jscs.2013.01.003

    31. [31]

      Wan J., Xu X., Zhang G., Li Y., Feng K., Peng Q.Energy Environ. Sci. 2017, 10, 1739.  doi: 10.1039/C7EE00805H

    32. [32]

      Taouali W., Casida M. E., Darghouth A. A. M. H. M., Alimi K. Comput. Mater. Sci. 2018, 150, 54.  doi: 10.1016/j.commatsci.2018.03.038

    33. [33]

      Bourass M., Touimi B. A., Benzakour M., McHarfi M., Jhilal F., Serein-Spirau F., Lère-Porte J.-P., Sotiropoulos J.-M., Bouzzine S. M., Bouachrine M.J. Saudi Chem. Soc. 2017, 21, 563.  doi: 10.1016/j.jscs.2017.01.001

    34. [34]

      Zhang L., Shen W., He R., Liu X., Tang X., Yang Y., Li M.Org. Electron. 2016, 32, 134.  doi: 10.1016/j.orgel.2016.01.023

    35. [35]

      Tai C.-K., Hsieh C.-A., Chang K.-H., Wang B.-C.Res. Chem. Intermed. 2016, 42, 6907.  doi: 10.1007/s11164-016-2504-0

    36. [36]

      Dennler G., Scharber M. C.Brabec C. J.Adv. Mater. 2009, 21, 1323.  doi: 10.1002/adma.200801283

  • 加载中
    1. [1]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    2. [2]

      Sheng TangMingyue LiaoWeihai SunJihuai WuJiamin LuYiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838

    3. [3]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    4. [4]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    5. [5]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    6. [6]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    7. [7]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    8. [8]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    9. [9]

      Shuqi ChenCankun ZhangXiaonuo DongHui-Jun ZhangJianbin Lin . Synthesis and photophysical properties of alternating donor-acceptor conjugated nanorings. Chinese Chemical Letters, 2025, 36(6): 110354-. doi: 10.1016/j.cclet.2024.110354

    10. [10]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    11. [11]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Zhaoyue LüTiantian ChaiYichao JinXiao WangYe ZouLijiang ZhangJiankang FengMengtong ZhangShuo WangChichong LuGuofan Jin . Asymmetrical carbazole-benzonitrile-based TADF emitters designed by alternate donor-acceptor strategy. Chinese Chemical Letters, 2025, 36(6): 110817-. doi: 10.1016/j.cclet.2025.110817

    14. [14]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    15. [15]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    16. [16]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    17. [17]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    18. [18]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    19. [19]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    20. [20]

      Hui WangHaodong JiDandan ZhangXudong YangHanchun ChenChunqian JiangWeiliang SunJun DuanWen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200

Metrics
  • PDF Downloads(10)
  • Abstract views(880)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return