Citation: Chen Dan, Liu Jianchen, Zhang Xinyuan, Jiang Hezhong, Li Jiahong. Recent Advances in Aqueous Phase Visible Light Catalytic Reactions[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3353-3362. doi: 10.6023/cjoc201907014 shu

Recent Advances in Aqueous Phase Visible Light Catalytic Reactions

  • Corresponding author: Li Jiahong, jiahongljh@163.com
  • Received Date: 8 July 2019
    Revised Date: 1 August 2019
    Available Online: 7 December 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21901216), the Fundamental Research Funds for the Central Universities (No.2682017CX091) and the 13th Personalized Experimental Project and the Student Research Training Program (Nos. GX201913085, GX201913108)the Fundamental Research Funds for the Central Universities 2682017CX091the 13th Personalized Experimental Project and the Student Research Training Program GX201913108the National Natural Science Foundation of China 21901216the 13th Personalized Experimental Project and the Student Research Training Program GX201913085

Figures(12)

  • Water is a medium for reaction in living organisms, which is safe, cheap and easy to obtain, and visible light is a clean and renewable natural resource. Exploring the controllable free radical reaction under the illumination condition in water and developing a simple, green and efficient synthesis method not only conform to the current green chemistry theme, but also have an important scientific significance in theory and practical application. The classification and review of visible light catalysis in aqueous phase have been carried out in recent years, and the corresponding mechanisms are discussed.
  • 加载中
    1. [1]

      Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.  doi: 10.1039/B918763B

    2. [2]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

    3. [3]

      Stillinger, F. H. Nature (London) 1999, 401, 850.  doi: 10.1038/44698

    4. [4]

      (a) Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415.
      (b) Zhou, Z.; Duan; J.; Mu, X.; Xiao, S. Chin. J. Org. Chem. 2018, 38, 585(in Chinese).
      (周曌, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585.)

    5. [5]

      Anastas, P. T. Chem. Rev. 2007, 107, 2167.  doi: 10.1021/cr0783784

    6. [6]

      (a) Itami, K.; Yoshida, J.-I. Chem. Rec. 2002, 2, 213.
      (b) Li, C.-J.; Meng, Y.; Yi, X.-H.; Ma, J.; Chan, T.-H. J. Org. Chem. 1997, 62, 8632.

    7. [7]

      Nicolaou, K. C.; Xu, H.; Wartmann, M. Angew. Chem., Int. Ed. 2005, 44, 756.  doi: 10.1002/anie.200462211

    8. [8]

      Bu, M.-J.; Lu, G.-P.; Jiang, J.; Cai, C. Catal. Sci. Technol. 2018, 8, 3728.  doi: 10.1039/C8CY01221K

    9. [9]

      Huang, Y.; Wei, W. Prog. Chem. 2018, 30, 1819(in Chinese).
       

    10. [10]

      Fujishima, A.; Honda, K. Nature (London) 1972, 238, 37.  doi: 10.1038/238037a0

    11. [11]

      (a) Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J. D.; Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 8514.
      (b) Jiang, X.; Zhang, M.-M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 2402.
      (c) Ye, S.; Li, X.; Xie, W.; Wu, J. Eur. J. Org. Chem. 2019 (DOI:10.1002/ejoc.201900396).
      (d) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
      (e) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China, Chem. 2018, 62, 24.
      (f) Chen, J.-R.; Yan, D.-M.; Wei, Q.; Xiao, W.-J. ChemPhotoChem 2017, 1, 148.
      (g) Ren, L.; Ran, M.; He, J.; Qian, Y.; Yao, Q. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese).
      (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
      (h) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
      (i) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189(in Chinese).
      (王雷雷, 鲍鹏丽, 刘维维, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)

    12. [12]

      Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2017, 82, 2059.  doi: 10.1021/acs.joc.6b02891

    13. [13]

      (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
      (b) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
      (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (d) Qiu, G.; Li, Y.; Wu, J. Org. Chem. Front. 2016, 3, 1011.
      (e) Reckenthaeler, M.; Griesbeck, A. G. Adv. Synth. Catal. 2013, 355, 2727.
      (f) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.

    14. [14]

      Li, L.; Huang, M.; Liu, C.; Xiao, J. C.; Chen, Q. Y.; Guo, Y.; Zhao, Z. G. Org. Lett. 2015, 17, 4714.  doi: 10.1021/acs.orglett.5b02177

    15. [15]

      Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.  doi: 10.1039/C7QO00795G

    16. [16]

      Hou, H.; Zhu, S.; Pan, F.; Rueping, M. Org. Lett. 2014, 16, 2872.  doi: 10.1021/ol500893g

    17. [17]

      (a) Allavena, M. Mol. Eng. 1995, 5, 403. (b) Head-Gordon, T.; Hura, G. Chem. Rev. 2002, 102, 2651.

    18. [18]

      Jayaraman, M.; Batista, M. T.; Manhas, M. S.; Bose, A. K. Heterocycles 1998, 48, 1100.

    19. [19]

      Zou, Y.-Q.; Guo, W.; Liu, F.-L.; Lu, L.-Q.; Chen, J.-R..; Xiao, W.-J. Green Chem. 2014, 16, 3787.  doi: 10.1039/C4GC00647J

    20. [20]

      Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.  doi: 10.1039/C7SC02556D

    21. [21]

      Wei, W.; Bao, P.; Yue, H.; Liu, S.; Wang, L.; Li, Y.; Yang, D. Org. Lett. 2018, 20, 5291.  doi: 10.1021/acs.orglett.8b02231

    22. [22]

      Zhang, M.; Yuan, X. A.; Zhu, C.; Xie, J. Angew. Chem., Int. Ed. 2019, 58, 312.  doi: 10.1002/anie.201811522

    23. [23]

      (a) Converso, A.; Burow, K.; Marzinzik, A.; Sharpless, K. B.; Finn, M. G. J. Org. Chem. 2001, 66, 4386.
      (b) Converso, A.; Burow, K.; Marzinzik, A.; Sharpless, B.; Finn, M. G. J. Org. Chem. 2004, 69, 7336.
      (c) Yudin, A. Aziridines and Epoxides in Organic Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, p. 492.

    24. [24]

      (a) Breslow, R.; Maitra, U.; Rideout, D. Tetrahedron Lett. 1983, 24, 1901.
      (b) Grieco, P. A.; Garner, P.; He, Z.-M. Tetrahedron Lett. 1983, 24, 1897.
      (c) Grieco, P. A.; Yoshida, K.; Garner, P. J. Org. Chem. 1983, 48, 3137.
      (d) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816.

    25. [25]

      Lindstróm, U. M. Chem. Rev. 2002, 102, 2751.  doi: 10.1021/cr010122p

    26. [26]

      Fang, J.; Li, L.; Yang, C.; Chen, J.; Deng, G.-J.; Gong, H. Org. Lett. 2018, 20, 7308.  doi: 10.1021/acs.orglett.8b03246

    27. [27]

      Zhang, M.; Fu, Q.-Y.; Gao, G.; He, H.-Y.; Zhang, Y.; Wu, Y.-S.; Zhang, Z.-H. ACS Sustainable Chem. Eng. 2017, 5, 6175.  doi: 10.1021/acssuschemeng.7b01102

    28. [28]

      Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.  doi: 10.1039/C9GC00222G

    29. [29]

      (a) Cobo, I.; Matheu, M. I.; Castillór, S.; Boutureira, O.; Davis, B. G. Org. Lett. 2012, 14, 1728.
      (b) Ganesamoorthy, S.; Shanmugasundaram, K.; Karvembu, R. J. Mol. Catal. A: Chem. 2013, 371, 118.
      (c) Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991, 113, 7411.

    30. [30]

      (a) Lysen, M.; Koehler, K. Synthesis 2006, 692.
      (b) Soomro, S. S.; Roehlich, C.; Koehler, K. Adv. Synth. Catal. 2011, 353, 767.
      (c) Xie, L.-Y.; Jiang, L.-L.; Tan, J.-X.; Wang, Y.; Xu, X.-Q.; Zhang, B.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019.

    31. [31]

      (a) Solodenko, W.; Schoen, U.; Messinger, J.; Glinschert, A.; Kirschning, A. Synlett 2004, 1699.
      (b) Zhang, J.; Yang, F.; Ren, G.; Mak, T. C. W.; Song, M.; Wu, Y. Ultrason. Sonochem. 2007, 15, 115.
      (c) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.

    32. [32]

      Xue, D.; Jia, Z. H.; Zhao, C. J.; Zhang, Y. Y.; Wang, C.; Xiao, J. Chem.-Eur. J. 2014, 20, 2960.  doi: 10.1002/chem.201304120

    33. [33]

      You, G.; Wang, K.; Wang, X.; Wang, G.; Sun, J.; Duan, G.; Xia, C. Org. Lett. 2018, 20, 4005.  doi: 10.1021/acs.orglett.8b01395

    34. [34]

      Long, B.; Ding, Z.; Wang, X. ChemSusChem 2013, 6, 2074.  doi: 10.1002/cssc.201300360

    35. [35]

      Bu, M.-J.; Cai, C.; Gallou, F.; Lipshutz, B. H. Green Chem. 2018, 20, 1233.  doi: 10.1039/C7GC03866F

    36. [36]

      Zhang, Z.; Zhao, Z.; Hou, Y.; Wang, H.; Li, X.; He, G.; Zhang, M. Angew. Chem., Int. Ed. 2019, 58, 8862.  doi: 10.1002/anie.201904407

    37. [37]

      Zou, L.; Li, P.; Wang, B.; Wang, L. Green Chem. 2019, 21, 3362.  doi: 10.1039/C9GC00938H

    38. [38]

      Wang, H.; Li, W. G.; Zeng, K.; Wu, Y. J.; Zhang, Y.; Xu, T. L.; Chen, Y. Angew. Chem., Int. Ed. 2019, 58, 561.  doi: 10.1002/anie.201811261

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    7. [7]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    20. [20]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

Metrics
  • PDF Downloads(46)
  • Abstract views(2685)
  • HTML views(432)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return