Citation: Sun Yiming, Ding Qifeng, Yu Yang, He Yide, Huang Fei. Progress in Co-Catalyzed C-H Amination[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3363-3374. doi: 10.6023/cjoc201906026 shu

Progress in Co-Catalyzed C-H Amination

  • Corresponding author: He Yide, heyd@njtech.edu.cn Huang Fei, huangfei0208@yeah.net
  • Received Date: 20 June 2019
    Revised Date: 24 July 2019
    Available Online: 7 December 2019

    Fund Project: the Postdoctoral Science Foundation of China 2019M651809the Postdoctoral Science Foundation of Anhui Province 2018B252the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture XTE1850the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture XTC1810Project supported by the Postdoctoral Science Foundation of China (No. 2019M651809), the Jiangsu Synergetic Innovation Center for Advanced Bio-manufacture (Nos. XTE1850, XTC1810), the Postdoctoral Science Foundation of Anhui Province (No. 2018B252) and the Natural Science Foundation of Jiangsu Province (No. BK20160989)the Natural Science Foundation of Jiangsu Province BK20160989

Figures(26)

  • Amino compounds have a wide range of applications in the fields of organic chemistry, medicinal chemistry and functional materials. The efficient construction of C-N bonds has important research significance. Conventional amination reactions to construct C-N bonds require pre-functionalization of the substrate and inevitably produce quantitative halogenate by-products. The C-H amination reaction is directly based on hydrocarbons. The reaction has the advantages of "step" and "atomic" economy, in line with the green chemistry concept. Transition metal cobalt has the advantage of low toxicity and low cost. As a catalyst for C-H amination reaction, it exhibits its unique catalytic properties and attracts the attention of chemists. The research progress of cobalt-catalyzed C-H amination in recent years is summarized. At the same time, the challenges and development prospects of the research field are summarized and forecasted.
  • 加载中
    1. [1]

      (a) Ning, Z.; Tian, H. Chem. Commun. 2009, 5483.
      (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
      (c) Liu, D.; Zhang, Z.; Zhang, H.; Wang, Y. Chem. Commun. 2013, 49, 10001.
      (d) Mphahlele, M. J.; Paumo, H. K.; El-Nahas, A. M.; ElHendawy, M. M. Molecules 2014, 19, 795.
      (e) Lücking, U. Angew. Chem., Int. Ed. 2013, 52, 9399.
      (f) Liu, L.-T.; Chen, Y.-Y.; Zhang, A.-A.; Liu, X.; Zhang, L.; Bai, J.-R.; Li, H.; Mao, G.-L. Chin. J. Org. Chem. 2019, 39, 475(in Chinese).
      (刘澜涛, 陈莹莹, 张安安, 刘雪, 张丽, 白静茹, 李恒, 毛国梁, 有机化学, 2019, 39, 475.)

    2. [2]

      (a) Dillard, R.; Yen, T.; Stark, P.; Pavey, D. J. Med. Chem. 1980, 23, 717.
      (b) Zhou, H.; Chen, Z.-Y. Chin. J. Org. Chem. 2018, 38, 719(in Chinese).
      (周豪, 陈知远, 有机化学, 2018, 38, 719.)

    3. [3]

      Bartoszyk, G.; Dooley, D.; Barth, H.; Hartenstein, J.; Satzinger, G. J. Pharm. Pharmacol. 1987, 39, 407.  doi: 10.1111/j.2042-7158.1987.tb03410.x

    4. [4]

      (a) Achelle, S.; Rodríguez-Lopez, J.; Guen, F. R. J. Org. Chem. 2014, 79, 7564.
      (b) Witt, A.; Bergman, J. Curr. Org. Chem. 2003, 7, 659.

    5. [5]

      (a) Strohriegl, P.; Grazulevicius, J. V. Adv. Mater. 2002, 14, 1439.
      (b) Nishimura, K.; Kobota, T.; Inada, H.; Shirota, Y. J. Mater. Chem. 1991, 1, 897

    6. [6]

      (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
      (b) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.
      (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
      (d) Hartwig, J. F. Nature 2008, 455, 314.

    7. [7]

      (a) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
      (b) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
      (c) Zhao, F.-Q.; Yang, Q.; Zhang, J.-J.; Shi, W.-M.; Hu, H.-H.; Liang, F.; Wei, W.; Zhou, S.-L. Org. Lett. 2018, 20, 7753.
      (d) Gao, F.; Han, X.; Li, C.-P.; Liu, L.-J.; Cong, Z.-Q.; Liu, H. RSC Adv. 2018, 8, 32659.
      (e) Yetra, S. R.; Shen, Z.-G.; Wang, H.; Ackermann, L. Beilstein J. Org. Chem. 2018, 14, 1546.
      (f) Wang, F.; Jin, L.; Kong, L.-H.; Li, X.-W. Org. Lett. 2017, 19, 1812.
      (g) Mei, R.-H.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793.
      (h) Zhang, L.-B.; Zhang, S.-K.; Wei, D.-H.; Zhu, X.-J.; Hao, X.-Q.; Su, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 1318.
      (i) Sun, J.-S.; Liu, M.; Zhang, J.; Dong, L. J. Org. Chem. 2018, 83, 10555.

    8. [8]

      (a) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth. Catal. 2014. 356 1443.
      (b) Song, G.; Li, X. Acc. Chem. Res. 2015. 48 1007.
      (c) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017. 117, 8908.
      (d) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017. 117, 9163.

    9. [9]

      (a) Gandeepan, P.; Cheng, C. H. Acc. Chem. Res. 2015, 48, 1194.
      (b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684.
      (c) Prakash, S.; Muralirajan, K.; Cheng, C. H. Angew. Chem., Int. Ed. 2016, 55, 1844.
      (d) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi, B.-F. Org. Lett. 2016, 18, 1776.
      (e) Wei, D.-H.; Zhu, X.-J.; Niu, J.-L.; Song, M.-P. ChemCatChem 2016, 8, 1242.
      (f) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
      (g) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341.
      (h) Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347(in Chinese).
      (顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
      (i) Zhang, J.-H.; Hao, X.-Q.; Wang, Z.-L.; Ren, C.-J.; Niu, J.-L.; Song, M.-P. Chin. J. Org. Chem. 2017, 37, 1237(in Chinese).
      (张家恒, 郝新奇, 王正龙, 任常久, 牛俊龙, 宋毛平, 有机化学, 2017, 37, 1237.)
      (j) Cheng, B.; Lu, P.; Zhao, J.-J.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 1704(in Chinese).
      (程彪, 陆鹏, 赵家金, 陆展, 有机化学, 2019, 39, 1704.)

    10. [10]

      (a) Park, J.; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 14103.
      (b) Liang, Y.-J.; Liang, Y.-F.; Tang, C.-H.; Yuan, Y.-Z.; Jiao, N. Chem. Eur. J. 2015, 21, 16395.
      (d) Wu, F.-F.; Zhao, Y.; Chen, W.-Z. Tetrahedron 2016, 72, 8004.
      (e) Wang, F.; Wang, H.; Wang, Q.; Yu, S.-J.; Li, X.-W. Org. Lett. 2016, 18, 1306.
      (g) Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.
      (h) Liu, Y.; Xie, F.; Jia, A.-Q.; Li, X.-W. Chem. Commun. 2018, 54, 4345.
      (i) Bera, S. S.; Sk, M. R.; Maji, M. S. Chem. Eur. J. 2019, 25, 1806.
      (j) Yan, Q.-Q.; Xiao, T.-X.; Liu, Z.-X.; Zhang, Y.-H. Adv. Synth. Catal. 2016, 358, 2707.
      (k) Cheng, H.-C.; Hernández, J. G.; Bolm, C. Adv. Synth. Catal. 2018, 360, 1.
      (l) Borah, G.; Borah, P.; Patel, P. Org. Biomol. Chem. 2017, 15, 3854.
      (m) Yu, X.-L.; Ma, Q.; Lv, S.-Y.; Li, J.; Zhang, C.; Hai, L.; Wang, Q.-T.; Wu, Y. Org. Chem. Front. 2017, 4, 2184.
      (n) Shi, P.-F.; Wang, L.-L.; Chen, K.-H.; Wang, J.; Zhu, J. Org. Lett. 2017, 19, 2418.

    11. [11]

      (a) Villanueva, O.; Weldy, N. M.; Blakey, S. B.; MacBeth, C. E. Chem. Sci. 2015, 6, 6672.
      (b) Harden, J. D.; Ruppel, J. V.; Gao, G.-Y.; Zhang, X. P. Chem. Commun. 2007, 4644.
      (c) Pang, S.-F.; Yuan, H.-K.; Wu, Y.-J.; Shi, F. J. Mol. Catal. 2017, 31, 105(in Chinese).
      (庞少峰, 袁航空, 吴亚娟, 石峰, 分子催化, 2017, 31, 105.)
      (d) Wu, X.-S.; Yang, K.; Zhao, Y.; Sun, H.; Li, G.-G.; Ge, H.-B. Nat. Commun. 2015, 6, 6462.
      (e) Lu, H.-J.; Li, C.-Q.; Jiang, H.-L.; Lizardi, C. L.; Zhang, X. P. Angew. Chem., Int. Ed. 2014, 53, 7028.
      (f) Lu, H.-J.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899.
      (g) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.; Mangioni, E.; Cenini, S. Chem. Eur. J. 2003, 9, 249.
      (h) Cenini, S.; Tollari, S.; Penoni, A.; Cereda C. J. Mol. Catal. 1999, 137, 135.
      (i) Ruppel, J. V.; Kamble, R. M.; Zhang, X. P. Org. Lett. 2007, 9, 4889.
      (j) Lu, H.-J.; Tao, J.; Jones, J. E.; Wojtas, L.; Zhang, X. P. Org. Lett. 2010, 12, 1248.
      (k) Lu, H.-J.; Subbarayan, V.; Tao, J.; Zhang, X. P. Organometallics 2010, 29, 389.
      (l) Cenini, S.; Gallo, E.; Penoni, A.; Ragainia, F.; Tollari, S. Chem. Commun. 2000, 2265.
      (m) Tan, P.-W.; Mak, A. M.; Sullivan, M. B.; Dixon, D. J.; Seayad, J. Angew. Chem., Int. Ed. 2017, 56, 16550.
      (n) Lu, H.-J.; Jiang, H.-L.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2010, 49, 10192.

    12. [12]

      Patel, P.; Chang, S. ACS Catal. 2015, 5, 853.  doi: 10.1021/cs501860b

    13. [13]

      Wang, X.-M.; Lerchen, A.; Glorius, F. Org. Lett. 2016, 18, 2090.  doi: 10.1021/acs.orglett.6b00716

    14. [14]

      Wang, H.; Lorion, M.-M.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 10386.  doi: 10.1002/anie.201603260

    15. [15]

      Huang, J.-p.; Huang, Y.-F.; Wang, T.; Huang, Q.; Wang, Z.-H.; Chen, Z.-Y. Org. Lett. 2017, 19, 1128.  doi: 10.1021/acs.orglett.7b00120

    16. [16]

      Du, C.; Li, P.-X.; Zhu, X.-J.; Han, J.-N.; Niu, J.-L.; Song, M.-P. ACS Catal. 2017, 7, 2810.  doi: 10.1021/acscatal.7b00262

    17. [17]

      Sauermann, N.; Mei, R.-H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.  doi: 10.1002/anie.201802206

    18. [18]

      (a) Parry, J. B.; Fu, N.; Lin, S. Synlett 2018, 29, 257.
      (b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
      (c) Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50, 2346.
      (d) Jiao, K.-J.; Zhao, C.-Q.; Fang, P.; Mei, T.-S. Tetrahedron Lett. 2017, 58, 797.
      (e) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C. Synlett 2017, 28, 1867.

    19. [19]

      Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.  doi: 10.1002/adsc.201301110

    20. [20]

      Li, W.; Weng, L.; Jin, G. Inorg. Chem. Commun. 2004, 7, 1174.  doi: 10.1016/j.inoche.2004.09.005

    21. [21]

      Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Chem. Commun. 2015, 51, 4659.  doi: 10.1039/C4CC10284C

    22. [22]

      Gao, X.-L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A.-W. J. Am. Chem. Soc. 2018, 140, 4195.  doi: 10.1021/jacs.7b13049

    23. [23]

      Wang, S.-B.; Gu, Q.; You, S.-L. J. Catal. 2018, 361, 393.  doi: 10.1016/j.jcat.2018.03.007

    24. [24]

      Huang, D.-Y.; Yao, Q.-J.; Zhang, S.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Org. Lett. 2019, 21, 951.  doi: 10.1021/acs.orglett.8b03938

    25. [25]

      Lu, H.-J.; Hu, Y.; Jiang, H.-L.; Wojtas, L.; Zhang, X. P. Org. Lett. 2012, 14, 5158.  doi: 10.1021/ol302511f

    26. [26]

      Luo, Y.-R. In Comprehensive Handbook of Chemical Bond Energies, Vol. 3, Ed.: Luo, Y.-R., Taylor & Francis Group, Boca Raton, 2007, p. 19.

    27. [27]

      Barsu, N.; Rahman, M. A.; Sen, M.; Sundararaju B. Chem. Eur. J. 2016, 22, 9135.  doi: 10.1002/chem.201601597

    28. [28]

      Lu, H.-J.; Lang, K.; Jiang, H.-L.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2016, 7, 6934.  doi: 10.1039/C6SC02231F

    29. [29]

      Li, C.-Q.; Lang, K.; Lu, H.-J.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2018, 57, 16837.  doi: 10.1002/anie.201808923

    30. [30]

      Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.; Matsunaga. S. Angew. Chem., Int. Ed. 2019, 58, 1153.  doi: 10.1002/anie.201812215

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    11. [11]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(15)
  • Abstract views(4237)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return