Citation: Yang Liu, Xu Guohe, Ma Jingjun, Yang Qian, Feng An, Cui Jinggang. Recent Advances in the Application of in-situ Generated Hypervalent Iodine Reagents in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(1): 28-39. doi: 10.6023/cjoc201906023 shu

Recent Advances in the Application of in-situ Generated Hypervalent Iodine Reagents in Organic Synthesis

  • Corresponding author: Ma Jingjun, mjjwjpmartin@163.com
  • Received Date: 19 June 2019
    Revised Date: 27 August 2019
    Available Online: 13 January 2019

    Fund Project: Project supported by the Young Tip-Top Talents Plan of Universities and Colleges in Hebei Province (No. BJ201702), and the Specific Foundation for Doctor in Hebei Agriculture University of China (No. ZD2016027)the Specific Foundation for Doctor in Hebei Agriculture University of China ZD2016027the Young Tip-Top Talents Plan of Universities and Colleges in Hebei Province BJ201702

Figures(6)

  • Based on the atomic economy, mild performance and environment friendly, the in-situ generation of hypervalent iodine reagents has been vastly applied in many significant oxidative reactions and asymmetric catalysis. In this paper, the progress of in-situ generated hypervalent iodine reagents is systematically reviewed, including conception and mechanisms. According to the different reaction types, the application of in-situ generated hapervalent iodine reagent in organic synthesis reaction is summarized, including trivalent iodine reagent, pentavalent iodine reagent and chiral hypervalent iodine reagent. The problem of in-situ generated hapervalent iodine researches is analyzed, and the future development of in-situ hapervalent iodine is prospected.
  • 加载中
    1. [1]

      Musher, J. I. Angew. Chem. Int. Ed. 1969, 8, 54.

    2. [2]

      (a) Sandin, R. B. Chem. Rev. 1943, 32, 249.
      (b) Banks, D. F. Chem. Rev. 1966, 66, 243.
      (c) Varvoglis, A. Tetrahedron 1997, 53, 1179.
      (d) Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111.
      (e) Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 7094.
      (f) Mu, X.; Wu, T.; Wang, H.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
      (g) Duan, X.; Yang, K.; Wang, Z.; Zhang, L.; Tong, Y.; Liu, H.; Du, K.; Tang, R. Chin. J. Org. Chem. 2015, 35, 2552(in Chinese).
      (段希焱, 杨坤, 王志成, 张璐, 佟悦, 刘浩哲, 杜珂, 唐榕泽, 有机化学, 2015, 35, 2552.)

    3. [3]

      (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
      (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523.
      (c) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893.
      (d) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
      (e) Zhdankin, V. V. ARKIVOC 2009, i, 1.
      (f) Kuepper, F. C.; Feiters, M. C.; Olofsson, B.; Kaiho, T.; Yanagida, S.; Zimmermann, M. B.; Carpenter, L. J.; Luther, G. W.; Lu, Z.; Jonsson, M.; Kloo, L. Angew. Chem., Int. Ed. 2011, 50, 11598.
      (g) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
      (h) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
      (i) Duan, Y.; Jiang, S.; Han, Y.; Sun, B.; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973(in Chinese).
      (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
      (j) Zhang, X.; Cong, Y.; Lin, G.; Guo, X.; Cao, Y.; Lei, K.; Du, Y. Chin. J. Org. Chem. 2016, 36, 2513(in Chinese).
      (张翔, 丛颖, 林光宇, 郭旭亮, 曹阳, 雷坤华, 杜云飞, 有机化学, 2016, 36, 2513.)
      (k) Han, Y.; Zhang, C. Tetrahedron Lett. 2018, 59, 3052.
      (l) Cai, Q.; Ma, H. Acta Chim. Sinica 2019, 77, 213(in Chinese).
      (蔡倩, 马浩文, 化学学报, 2019, 77, 213.)
      (m) Liu, Dan.; He J.; Zhang, C. Univ. Chem. 2019, 34, 1(in Chinese).
      (刘丹, 贺家豪, 张弛, 大学化学, 2019, 34, 1.)

    4. [4]

      Yang, L.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. J. Org. Chem. 2016, 81, 3372.  doi: 10.1021/acs.joc.5b02443

    5. [5]

      Yusubov, M. S.; Zhdankin, V. V. Curr. Org. Synth. 2012, 9, 247.  doi: 10.2174/157017912799829021

    6. [6]

      Uyanik M, Ishihara K. ChemCatChem 2012, 4, 177.  doi: 10.1002/cctc.201100352

    7. [7]

      Trost, B. M. Science 1991, 254, 1471.

    8. [8]

      Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259.

    9. [9]

      (a) Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Sci. China, Chem. 2014, 57, 189.
      (b) Zheng, Z. Ph.D. Dissertation, Tianjing University, Tianji, 2014(in Chinese).
      (郑子圣, 博士论文, 天津大学, 天津, 2014.)
      (c) Singh, F. V.; Wirth, T. Chem.-Asian J. 2014, 9, 950.
      (d) Parra, A.; Reboredo, S. Chem.-Eur. J. 2013, 19, 17244.

    10. [10]

      Uyanik, M.; Ishihara, K. Chem. Cat. Chem. 2012, 4, 177.

    11. [11]

      Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244.  doi: 10.1021/ja0542800

    12. [12]

      Yamamoto, Y.; Kawano, K.; Toy, P. H.; Togo, H. Tetrahedron 2007, 63, 4680.  doi: 10.1016/j.tet.2007.03.091

    13. [13]

      Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem., Int. Ed. 2005, 44, 6193.  doi: 10.1002/anie.200501688

    14. [14]

      Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224.

    15. [15]

      Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W.; Houk. K.; Shi, Z. J. Am. Chem. Soc. 2015, 137, 7564  doi: 10.1021/jacs.5b03488

    16. [16]

      Liang, D.; Yu, W.; Nguyen, N.; Deschamps, J. R.; Imler, G. H.; Li, Y.; MacKerell, A. D.; Jiang, C.; Xue, F. J. Org. Chem. 2017, 82, 3589.

    17. [17]

      Ito, M.; Kubo, H.; Itani, I.; Morimoto, K.; Dohi, T.; Kita, Y. J. Am. Chem. Soc. 2013, 135, 14078.  doi: 10.1021/ja407944p

    18. [18]

      Miyamoto, K.; Sakai, Y.; Goda, S.; Ochiai, M. Chem. Commun. 2012, 48, 982.  doi: 10.1039/C2CC16360H

    19. [19]

      Philips, B.; Frostick, F. C.; Starcher, P. S. J. Am. Chem. Soc. 1957, 79, 5982.  doi: 10.1021/ja01579a037

    20. [20]

      Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605.  doi: 10.1002/anie.201102984

    21. [21]

      He, Y.; Huang, J.; Liang, D.; Liu, L.; Zhu, Q. Chem. Commun. 2013, 49, 7352.

    22. [22]

      Wang, X.; Gallardo-Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2014, 53, 11084.  doi: 10.1002/anie.201407011

    23. [23]

      Shen, C.; Yang, M.; Xu, J.; Chen, C.; Zheng, K.; Shen, J.; Zhang, P. RSC Adv. 2017, 7, 49436.

    24. [24]

      Braddock, D. C.; Cansell, G.; Hermitage, S. A. Chem. Commun. 2006, 2483.

    25. [25]

      Fabry, D. C.; Stodulski, M.; Hoerner, S.; Gulder, T. Chem.-Eur. J. 2012, 18, 10834.

    26. [26]

      Ulmer, A.; Stodulski, M.; Kohlhepp, S. V.; Patzelt, C.; Poethig, A.; Bettray, W.; Gulder, T. Chem.-Eur. J. 2015, 21, 1444.  doi: 10.1002/chem.201405888

    27. [27]

      Patzelt, C.; Alexander, P.; Gulder, T. Org. Lett. 2016, 18, 3466.  doi: 10.1021/acs.orglett.6b01658

    28. [28]

      Stodulski, M.; Goetzinger, A.; Kohlhepp, S. V.; Gulder, T. Chem. Commun. 2014, 50, 3435.  doi: 10.1039/C3CC49850F

    29. [29]

      Liu, H.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 8220.  doi: 10.1016/j.tetlet.2007.09.078

    30. [30]

      Alhalib, A.; Kamouka, S.; Moran, W. J. Org. Lett. 2015, 17, 1453.  doi: 10.1021/acs.orglett.5b00333

    31. [31]

      Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita. Y. Angew. Chem., Int. Ed. 2016, 55, 3652.  doi: 10.1002/anie.201511007

    32. [32]

      Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 11399.  doi: 10.1021/jo302375m

    33. [33]

      Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.  doi: 10.1002/anie.201101522

    34. [34]

      Ma, L.; Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333.  doi: 10.1039/c1cc13568f

    35. [35]

      Zhu, C.; Wei, Y. ChemSusChem 2011, 4, 1082.  doi: 10.1002/cssc.201100228

    36. [36]

      Guo, W.; Vallcorba, O.; Vallribera, A.; Shafir, A.; Pleixats, R.; Rius, J. ChemCatChem 2014, 6, 468.  doi: 10.1002/cctc.201300774

    37. [37]

      Zhu, C.; Zhang, Y.; Zhao, H.; Huang, S.; Zhang, M.; Su, W. Adv. Synth. Catal. 2015, 357, 331.

    38. [38]

      Duhamel, T.; Stein, C. J.; Martínez, C.; Reiher, M.; Muñiz. K. ACS Catal. 2018, 8, 3918.

    39. [39]

      Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933.

    40. [40]

      Schulze, A.; Giannis, A. Synthesis 2006, 257.

    41. [41]

      Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251.  doi: 10.1021/ja807110n

    42. [42]

      Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470.  doi: 10.1021/ol9013188

    43. [43]

      Yusubov, M. S.; Zagulyaeva, A. A.; Zhdankin, V. V. Chem.-Eur. J. 2009, 15, 11091.  doi: 10.1002/chem.200901953

    44. [44]

      Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T. Synlett 2007, 538.

    45. [45]

      Fenga, Y.; Huanga, R.; Hua, L.; Xiong, Y.; Coeffard, V. Synthesis 2016, 48, 2637.  doi: 10.1055/s-0035-1561442

    46. [46]

      Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.  doi: 10.1021/acscatal.7b03118

    47. [47]

      Volp, K. A.; Harned, A. M. Chem. Commun. 2013, 49, 3001.  doi: 10.1039/c3cc00013c

    48. [48]

      Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 3787.  doi: 10.1002/anie.200800464

    49. [49]

      Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. J. Am. Chem. Soc. 2013, 135, 4558.  doi: 10.1021/ja401074u

    50. [50]

      Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175.  doi: 10.1002/anie.200907352

    51. [51]

      Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. J. Org. Chem. 2017, 82, 11954.  doi: 10.1021/acs.joc.7b02037

    52. [52]

      Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem.-Eur. J. 2015, 21, 10314.  doi: 10.1002/chem.201501583

    53. [53]

      Mizar, P.; Laverny, A.; Mohammad. E. S.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Chem. Eur. J. 2014, 20, 9910.  doi: 10.1002/chem.201403891

    54. [54]

      Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 3466.  doi: 10.1002/anie.201309967

    55. [55]

      Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 5580.  doi: 10.1021/acs.orglett.6b02816

    56. [56]

      Mennie, K. M.; Banik, S. M.; Reichert, E. C.; Jacobsen, E. N. J. Am. Chem. Soc. 2018, 140, 4797.  doi: 10.1021/jacs.8b02143

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    3. [3]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    4. [4]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    7. [7]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    8. [8]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

Metrics
  • PDF Downloads(105)
  • Abstract views(3477)
  • HTML views(1267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return