Citation: Yu Jia, Xiao Yafang, Chen Jiaxiong. Design and Synthesis of Novel Red Thermally Activated Delayed Fluorescent Molecule Based on Acenaphtho[1, 2-b]quinoxaline Electron-Acceptor[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3460-3466. doi: 10.6023/cjoc201906019 shu

Design and Synthesis of Novel Red Thermally Activated Delayed Fluorescent Molecule Based on Acenaphtho[1, 2-b]quinoxaline Electron-Acceptor

  • Corresponding author: Chen Jiaxiong, chenjiaxiong@suda.edu.cn
  • Received Date: 17 June 2019
    Revised Date: 22 July 2019
    Available Online: 30 December 2019

    Fund Project: Project supported by the China Postdoctoral Science Foundation (No. 2018M640517)the China Postdoctoral Science Foundation 2018M640517

Figures(8)

  • A new thermally activated delayed fluorescence (TADF) acceptor (A) segment, acenaphtho[1, 2-b]quinoxaline (AQ) group, is designed. And a novel red TADF material 10, 10', 10''-(acenaphtho[1, 2-b]quinoxaline-3, 9, 10-triyl)tris(10H-phenoxazine) (AQ-TPXZ) is developed by the conjunction of AQ group with phenoxazine as donor (D) moieties. The density functional theory calculation shows that this D-A molecule has a well separation between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. And the energy splitting between the lowest singlet state and the lowest triplet state is calculated to be 0.02 eV. The transient photoluminescence decays of AQ-TPXZ doped 4, 4'-di(9H-carbazol-9-yl)-1, 1'-biphenyl film exhibit double-component emission decay profiles. The organic light-emitting diode (OLED) using AQ-TPXZ as dopant realizes red emission with a peak at 624 nm. Moreover, the device obtains maximum external quantum efficiency (EQE) up to 7.4%, which is higher than the theoretical maximum EQE (5%) of traditional fluorescent OLEDs. This result not only indicates that AQ-TPXZ is a red TADF material but also provides a newly electron acceptor segment for designing novel red TADF emitters.
  • 加载中
    1. [1]

      Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.  doi: 10.1063/1.343409

    2. [2]

      Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234.  doi: 10.1038/nature08003

    3. [3]

      Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Abdi Jalebi, M.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. Science 2017, 356, 159.  doi: 10.1126/science.aah4345

    4. [4]

      Ye, Z.; Yang, J.; Ling, Z.; Zhao, Y.; Chen, G.; Zheng, Y.; Wei, B.; Shi, Y. Chin. J. Org. Chem. 2019, 39, 449(in Chinese).
       

    5. [5]

      Xu, Y.; Liang, X.; Zhou, X.; Yuan, P.; Zhou, J.; Wang, C.; Li, B.; Hu, D.; Qiao, X.; Jiang, X.; Liu, L.; Su, S.; Ma, D.; Ma, Y. Adv. Mater. 2019, 31, 1807388.  doi: 10.1002/adma.201807388

    6. [6]

      Guo, F.; Karl, A.; Xue, Q.-F.; Tam, K. C.; Forberich, K.; Brabec, C. J. Light Sci. Appl. 2017, 6, e17094.  doi: 10.1038/lsa.2017.94

    7. [7]

      Lin, D.; Song, S.; Chen, Z.; Guo, P.; Chen, J.; Shi, H.; Mai, Y.; Song, H. Chin. J. Org. Chem. 2018, 38, 103(in Chinese).
       

    8. [8]

      Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; Murata, Y.; Adachi, C. Nat. Commun. 2015, 6, 8476.  doi: 10.1038/ncomms9476

    9. [9]

      Wang, Z.; Li, X.-L.; Ma, Z.; Cai, X.; Cai, C.; Su, S.-J. Adv. Funct. Mater. 2018, 28, 1706922.  doi: 10.1002/adfm.201706922

    10. [10]

      Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sin. 2017, 75, 367(in Chinese).

    11. [11]

      Zhen, C.-G.; Dai, Y.-F.; Zeng, W.-J.; Ma, Z.; Chen, Z.-K.; Kieffer, J. Adv. Funct. Mater. 2011, 21, 699.  doi: 10.1002/adfm.201002165

    12. [12]

      Yuan, Y.; Chen, J.-X.; Chen, W.-C.; Ni, S.-F.; Wei, H.-X.; Ye, J.; Wong, F.-L.; Zhou, Z.-W.; Tong, Q.-X.; Lee, C.-S. Org. Electron. 2015, 18, 61.  doi: 10.1016/j.orgel.2015.01.009

    13. [13]

      Wu, Y.; Ren, H.; Wu, Y.; Wang, B. Acta Chim. Sin. 2015, 73, 53(in Chinese).

    14. [14]

      Yang, X.; Jiao, B.; Dang, J.-S.; Sun, Y.; Wu, Y.; Zhou, G.; Wong, W.-Y. ACS Appl. Mater. Interfaces 2018, 10, 10227.  doi: 10.1021/acsami.7b18330

    15. [15]

      Li, X.; Zhang, J.; Zhao, Z.; Wang, L.; Yang, H.; Chang, Q.; Jiang, N.; Liu, Z.; Bian, Z.; Liu, W.; Lu, Z.; Huang, C. Adv. Mater. 2018, 30, 1705005.  doi: 10.1002/adma.201705005

    16. [16]

      Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 4.

    17. [17]

      Chi, Y.; Tong, B.; Chou, P.-T. Coord. Chem. Rev. 2014, 281, 1.  doi: 10.1016/j.ccr.2014.08.012

    18. [18]

      Xu, H.; Chen, R.; Sun, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.  doi: 10.1039/C3CS60449G

    19. [19]

      Yang, X.; Guo, H.; Liu, B.; Zhao, J.; Zhou, G.; Wu, Z.; Wong, W.-Y. Adv. Sci. 2018, 5, 1701067.  doi: 10.1002/advs.201701067

    20. [20]

      Ai, X.; Evans, E. W.; Dong, S.; Gillett, A. J.; Guo, H.; Chen, Y.; Hele, T. J. H.; Friend, R. H.; Li, F. Nature 2018, 563, 536.  doi: 10.1038/s41586-018-0695-9

    21. [21]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    22. [22]

      Leitl, M. J.; Krylova, V. A.; Djurovich, P. I.; Thompson, M. E.; Yersin, H. J. Am. Chem. Soc. 2014, 136, 16032.  doi: 10.1021/ja508155x

    23. [23]

      Shao, S. Y.; Ding, J. Q.; Wang, L. X. Chin. J. Appl. Chem. 2018, 993(in Chinese).  doi: 10.11944/j.issn.1000-0518.2018.09.180202

    24. [24]

      Dias, F. B.; Santos, J.; Graves, D. R.; Data, P.; Nobuyasu, R. S.; Fox, M. A.; Batsanov, A. S.; Palmeira, T.; Berberan-Santos, M. N.; Bryce, M. R.; Monkman, A. P. Adv. Sci. 2016, 3, 1600080.  doi: 10.1002/advs.201600080

    25. [25]

      Chen, J.-X.; Liu, W.; Zheng, C.-J.; Wang, K.; Liang, K.; Shi, Y.-Z.; Ou, X.-M.; Zhang, X.-H. ACS Appl. Mater. Interfaces 2017, 9, 8848.  doi: 10.1021/acsami.6b15816

    26. [26]

      Godumala, M.; Choi, S.; Park, S. Y.; Cho, M. J.; Kim, H. J.; Ahn, D. H.; Moon, J. S.; Kwon, J. H.; Choi, D. H. Chem. Mater. 2018, 30, 5005.  doi: 10.1021/acs.chemmater.8b01207

    27. [27]

      Wang, T.-T, ; Huang, X. C.; Yu, Y. J.; Yuan, Y.; Feng, M. Q.; Jiang, Z. Q. Chin. J. Org. Chem. 2019, 39, 1436(in Chinese).
       

    28. [28]

      Guo, X. G.; Feng, S. Y. Chem. Res. 2019, 30, 111(in Chinese).
       

    29. [29]

      Chen, X.-L.; Jia, J.-H.; Yu, R.; Liao, J.-Z.; Yang, M.-X.; Lu, C.-Z. Angew. Chem. Int. Ed. 2017, 56, 15006.  doi: 10.1002/anie.201709125

    30. [30]

      Tan, J. H.; Huo, Y. P.; Cai, N.; Ji, S. M.; Li, Z.-Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457(in Chinese).
       

    31. [31]

      Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.  doi: 10.1038/nphoton.2014.12

    32. [32]

      Sun, J. W.; Lee, J.-H.; Moon, C.-K.; Kim, K.-H.; Shin, H.; Kim, J.-J. Adv. Mater. 2014, 26, 5684.  doi: 10.1002/adma.201401407

    33. [33]

      Pan, K.-C.; Li, S.-W.; Ho, Y.-Y.; Shiu, Y.-J.; Tsai, W.-L.; Jiao, M.; Lee, W.-K.; Wu, C.-C.; Chung, C.-L.; Chatterjee, T.; Li. Y.-S.; Wong, K.-T.; Hu, H.-C.; Chen, C.-C.; Lee, M.-T. Adv. Funct. Mater. 2016, 26, 7560.  doi: 10.1002/adfm.201602501

    34. [34]

      Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Angew. Chem. Int. Ed. 2014, 53, 6402.  doi: 10.1002/anie.201402992

    35. [35]

      Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.  doi: 10.1038/nmat4154

    36. [36]

      Li, J.; Nakagawa, T.; MacDonald, J.; Zhang, Q.; Nomura, H.; Miyazaki, H.; Adachi, C. Adv. Mater. 2013, 25, 3319.  doi: 10.1002/adma.201300575

    37. [37]

      Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070.  doi: 10.1021/ja510144h

    38. [38]

      Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang, G.; Wang, Y. ACS Appl. Mater. Interfaces 2017, 9, 9892.  doi: 10.1021/acsami.6b14796

    39. [39]

      Yuan, Y.; Hu, Y.; Zhang, Y.-X.; Lin, J.-D.; Wang, Y.-K.; Jiang, Z.-Q.; Liao, L.-S.; Lee, S.-T. Adv. Funct. Mater. 2017, 27, 1700986.  doi: 10.1002/adfm.201700986

    40. [40]

      Chen, J.-X.; Wang, K.; Zheng, C.-J.; Zhang, M.; Shi, Y.-Z.; Tao, S.-L.; Lin, H.; Liu, W.; Tao, W.-W.; Ou, X.-M.; Zhang, X.-H. Adv. Sci. 2018, 5, 1800436.  doi: 10.1002/advs.201800436

    41. [41]

      Yang, Y.; Zhao, L.; Wang, S. M.; Ding, J. Q.; Wang, L. X. Acta Polym. Sin. 2019, 50, 1(in Chinese).

    42. [42]

      Yu, L.; Wu, Z.; Xie, G.; Zeng, W.; Ma, D.; Yang, C. Chem. Sci. 2018, 9, 1385.  doi: 10.1039/C7SC04669C

    43. [43]

      Yuan, Y.; Chen, J.-X.; Chen, W.-C.; Ni, S.-F.; Wei, H.-X.; Ye, J.; Wong, F.-L.; Zhou, Z.-W.; Tong, Q.-X.; Lee, C.-S. Org. Electron. 2015, 18, 61.  doi: 10.1016/j.orgel.2015.01.009

    44. [44]

      Chen, J.-X.; Liu, W.; Zheng, C.-J.; Wang, K.; Liang, K.; Shi, Y.-Z.; Ou, X.-M.; Zhang, X.-H. ACS Appl. Mater. Interfaces 2017, 9, 8848.  doi: 10.1021/acsami.6b15816

    45. [45]

      Park, I. S.; Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Funct. Mater. 2016, 26, 1813.  doi: 10.1002/adfm.201505106

    46. [46]

      Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Mater. 2016, 28, 4626.  doi: 10.1002/adma.201506391

    47. [47]

      Park, H.-J.; Han, S. H.; Lee, J. Y.; Han, H.; Kim, E.-G. Chem. Mater. 2018, 30, 3215.  doi: 10.1021/acs.chemmater.8b00006

    48. [48]

      Xie, G.; Li, X.; Chen, D.; Wang, Z.; Cai, X.; Chen, D.; Li, Y.; Liu, K.; Cao, Y.; Su, S.-J. Adv. Mater. 2016, 28, 181.  doi: 10.1002/adma.201503225

    49. [49]

      Zhang, D.; Song, X.; Cai, M.; Kaji, H.; Duan, L. Adv. Mater. 2018, 30, 1705406.  doi: 10.1002/adma.201705406

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    9. [9]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    10. [10]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    11. [11]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(14)
  • Abstract views(827)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return