Citation: Shi Yan, Yu Youwei, Xue Lin, Wang Yanfeng. Progress of Fluorescent Probes with Perylene Tetracarboxylic Diimide as Chromophore[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3414-3437. doi: 10.6023/cjoc201906015 shu

Progress of Fluorescent Probes with Perylene Tetracarboxylic Diimide as Chromophore

  • Corresponding author: Shi Yan, wyfshiwoya@126.com Wang Yanfeng, shiyansdu@163.com
  • Received Date: 13 June 2019
    Revised Date: 5 July 2019
    Available Online: 24 December 2019

    Fund Project: the National Natural Science Foundation of China 21305079Project supported by the National Natural Science Foundation of China (No. 21305079)

Figures(13)

  • In recent years, molecular fluorescent probes have attracted extensive attention due to their high sensitivity, high selectivity, specificity and simplicity of design. Perylene tetracarboxylic diimide derivatives (PDIs) are well known for their excellent photothermal stability, chemical stability, high fluorescence quantum yield, large stokes shift and easy modification. Therefore, they can be used as excellent fluorophores. PDI itself has strong electron-withdrawing group and easily to be reduced but it is hard to be oxidized. However, due to their inherent structure, the poor water solubility and aggregatable ablility limited their applications in biological fields. The water solubility of PDI was improved by introducing hydrophilic groups into the structure. Therefore, the PDIs with the unique advantages will have potential application values in the field of fluorescence probe and has been developed rapidly for the past few years. The development of PDI as a chromophore in fluorescent probe for the detection of ion, gas, biomolecules, etc. is systematically summarized. Meanwhile, the design of the probes, fluorescence response mechanism and application of the probe are also discussed. Finally, a novel type of PDI fluorescent probe is proposed. The challenge of construction of the PDIs and future development are also reviewed.
  • 加载中
    1. [1]

      Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76, 2386.  doi: 10.1021/jo2001963

    2. [2]

      Jozeliunaite, A.; Striela, R.; Labanauskas, L.; Orentas, E. Synthesis 2017, 49, 5176.  doi: 10.1055/s-0036-1589088

    3. [3]

      Pasaogullari, N.; Icil, H.; Demuth, M. Dyes Pigm. 2006, 69, 118.  doi: 10.1016/j.dyepig.2005.03.001

    4. [4]

      Gao, G.; Liang, N.; Geng, H.; Jiang, W.; Fu, H.; Feng, J.; Hou, J.; Feng, X.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15914.  doi: 10.1021/jacs.7b09140

    5. [5]

      Wang, H.; Chen, L.; Xiao, Y. J. Mater. Chem. C 2017, 5, 12816.  doi: 10.1039/C7TC04726F

    6. [6]

      Liu, Y.; Cole, M. D.; Jiang, Y.; Kim, P. Y.; Nordlund, D.; Emrick, T.; Russell, T. P. Adv. Mater. 2018, 30, 1705976.  doi: 10.1002/adma.201705976

    7. [7]

      Villafiorita-Monteleone, F.; Kozma, E.; Giovanella, U.; Catellani, M.; Paolino, M.; Collico, V.; Colombo, M.; Cappelli, A.; Botta, C. Dyes Pigm. 2018, 149, 331.  doi: 10.1016/j.dyepig.2017.10.010

    8. [8]

      Türkmen, G.; Erten-Ela, S.; Icli, S. Dyes Pigm. 2009, 83, 297.  doi: 10.1016/j.dyepig.2009.05.014

    9. [9]

      Wang, B.; Yu, C. Angew. Chem. 2010, 122, 1527.  doi: 10.1002/ange.200905237

    10. [10]

      Wang, B.; Zhu, Q.; Liao, D.; Yu, C. J. Mater. Chem. 2011, 21, 4821.  doi: 10.1039/c0jm04527f

    11. [11]

      Wang, B.; Jiao, H.; Li, W.; Liao, D.; Wang, F.; Yu, C. Chem. Commun. 2011, 47, 10269.  doi: 10.1039/c1cc13606b

    12. [12]

      Würthner, F. Chem. Commun. 2004, 1564.
       

    13. [13]

      Guo, X.; Zhang, D.; Zhu, D. Adv. Mater. 2004, 2, 125.
       

    14. [14]

      Lin, J.; Zhu, C.; Liu, J.; Chen, B.; Zhang, Y.; Xue, J.; Liu, J. Chin. J. Chem. 2014, 32, 1116.  doi: 10.1002/cjoc.201400464

    15. [15]

      Wang, H.; Wang, D.; Wang, Q.; Li, X.; Schalley, C. Org. Biomol. Chem. 2010, 8, 1017.  doi: 10.1039/b921342b

    16. [16]

      Cheng, H.; Qian, Y. Dyes Pigm. 2015, 112, 317.  doi: 10.1016/j.dyepig.2014.07.005

    17. [17]

      He, X.; Liu, H.; Li, Y.; Wang, S.; Li, Y.; Wang, N.; Xiao, J.; Xu, X.; Zhu, D. Adv. Mater. 2005, 17, 2811.  doi: 10.1002/adma.200501173

    18. [18]

      Feng, X.; An, Y.; Yao, Z.; Li, C.; Shi, G. ACS Appl. Mater. Interfaces 2012, 4, 614.  doi: 10.1021/am201616r

    19. [19]

      Zhong, L.; Xing, F.; Bai, Y.; Zhao, Y.; Zhu, S. Spectrochim. Acta, Part A 2013, 115, 370.  doi: 10.1016/j.saa.2013.06.039

    20. [20]

      Wang, Y.; Zhang, L.; Zhang, G.; Wu, Y.; Wu, S.; Yu, J.; Wang, L. Tetrahedron Lett. 2014, 55, 3218.  doi: 10.1016/j.tetlet.2014.03.137

    21. [21]

      Fu, L.-N.; Qiao, Z. R.; Jin, X.; Li, L. R. Chem. Res. Appl. 2019, 31, 624 (in Chinese).
       

    22. [22]

      Che, Y.; Yang, X.; Zang, L. Chem. Commun. 2008, 1413.
       

    23. [23]

      Ruan, Y.; Li, A.; Zhao, J.; Shen, J.; Jiang, Y. Chem. Commun. 2010, 46, 4938.  doi: 10.1039/c0cc00630k

    24. [24]

      Fang, H.; Shellaiah, M.; Sinhg, A.; Raju Ramakrishnam, M. V.; Wu, Y.; Lin, H. Sens. Actuators, B 2014, 194, 229.  doi: 10.1016/j.snb.2013.12.082

    25. [25]

      Liu, K.; Xu, Z.; Yin, M.; Yang, W.; He, B.; Wei, W.; Shen, J. J. Mater. Chem. B 2014, 2, 2093.  doi: 10.1039/C3TB21801E

    26. [26]

      Han, A.; Liu, X.; Prestwich, G. D.; Zang, L. Sens. Actuators, B 2014, 198, 274.  doi: 10.1016/j.snb.2014.03.033

    27. [27]

      Malkongu, S.; Erdemir, S. Dyes Pigm. 2015, 113, 763.  doi: 10.1016/j.dyepig.2014.10.020

    28. [28]

      Erdemir, S.; Kocyigit, O.; Karakurt, S. Sens. Actuators, B 2015, 220, 381.  doi: 10.1016/j.snb.2015.05.103

    29. [29]

      Li, J.; Wu, Y.; Song, F.; Wei, G.; Cheng, Y.; Zhu, C. J. Mater. Chem. 2012, 22, 478.  doi: 10.1039/C1JM14037J

    30. [30]

      Zhao, X.; Gong, L.; Wu, Y.; Zhang, X.; Xie, J. Talanta 2016, 149, 98.  doi: 10.1016/j.talanta.2015.11.038

    31. [31]

      Zhou, R.; Li, B.; Wu, N.; Gao, G.; You, J.; Lan, J. Chem. Commun. 2011, 47, 6668.  doi: 10.1039/c1cc11200g

    32. [32]

      Wang, H.; Lang, Y.; Wang, H.; Lou, J.; Guo, H.; Li, X. Tetrahedron 2014, 70, 1997.  doi: 10.1016/j.tet.2014.01.063

    33. [33]

      Zhang, L.; Wang, Y.; Yu, J.; Zhang, G.; Cai, X.; Wu, Y.; Wang, L. Tetrahedron Lett. 2013, 54, 4019.  doi: 10.1016/j.tetlet.2013.05.076

    34. [34]

      Kumar, K.; Bhargava, G.; Kumar, S.; Singh, P. New J. Chem. 2018, 42, 1010.  doi: 10.1039/C7NJ03751A

    35. [35]

      Singh, P.; Mittal, L. S.; Vanita, V.; Kumar, K.; Walia, A.; Bhargava, G.; Kumar, S. J. Mater. Chem. B 2016, 4, 3750.  doi: 10.1039/C6TB00512H

    36. [36]

      Malkondu, S. Tetrahedron 2014, 70, 5580.  doi: 10.1016/j.tet.2014.06.094

    37. [37]

      Liu, X.; Zhang, N.; Zhou, J.; Chang, T.; Fang, C.; Shangguan, D. Analyst 2013, 138, 901.  doi: 10.1039/C2AN36203A

    38. [38]

      You, S.; Cai, Q.; Müillen, K.; Yang, W.; Yin, M. Chem. Commun. 2014, 50, 823.  doi: 10.1039/C3CC48046A

    39. [39]

      Wan, S.; Zheng, Y.; Shen, J.; Yang, W.; Yin, M. ACS Appl. Mater. Interfaces 2014, 6, 19515.  doi: 10.1021/am506641t

    40. [40]

      Shen, Y.; Ma, X.; Zhang, B.; Zhou, Z.; Sun, Q.; Jin, E.; Sui, M.; Tang, J.; Wang, J.; Fan, M. Chem.-Eur. J. 2011, 17, 5319.  doi: 10.1002/chem.201003495

    41. [41]

      Wu, Y.; Zhang, X.; Li, J.; Zhang, C.; Liang, H.; Mao, G.; Zhou, L.; Tan, W.; Yu, R. Anal. Chem. 2014, 86, 10389.  doi: 10.1021/ac502863m

    42. [42]

      Ling, J.; Naren, G.; Kelly, J.; Moody, T. S.; Prasanna de Silva, A. J. Am. Chem. Soc. 2015, 137, 3763.  doi: 10.1021/jacs.5b00665

    43. [43]

      Huang, L.; Chang, T. S.-W. Chem. Commun. 2011, 47, 2291.  doi: 10.1039/C0CC04262E

    44. [44]

      Aigner, D.; Borisov, S. M.; Petritsch, P.; Klimant, I. Chem. Commun. 2013, 49, 2139.  doi: 10.1039/c3cc39151e

    45. [45]

      Aigner, D.; Freunberger, S. A.; Wilkening, M.; Saf, R.; Borisov, S. M.; Klimant, I. Anal. Chem. 2014, 86, 9293.  doi: 10.1021/ac502513g

    46. [46]

      Ma, Y.; Li, J.; Hou, S.; Zhang, J.; Shi, Z.; Jiang, T.; Wei, X. New J. Chem. 2016, 40, 6615.  doi: 10.1039/C6NJ00153J

    47. [47]

      Ye, F.; Liang, X.; Wu, N.; Li, P.; Chai, Q.; Fu, Y. Spectrochim. Acta, Part A 2019, 216, 359.  doi: 10.1016/j.saa.2019.03.049

    48. [48]

      Georgiev, N. I.; Said, A. I.; Toshkova, R. A.; Tzoneva, D.; Bojinov, V. B, Dyes Pigm. 2019, 160, 28.  doi: 10.1016/j.dyepig.2018.07.048

    49. [49]

      Aigner, D.; Dmitriev, R. I.; Borisov, S. M.; Papkovsky, D. B.; Klimant, I. J. Mater. Chem. B 2014, 2, 6792.  doi: 10.1039/C4TB01006J

    50. [50]

      Zhang, W.; Gan, S. Y.; Li, F.; Han, D.; Zhang, Q.; Niu, L. RSC Adv. 2015, 5, 2207.  doi: 10.1039/C4RA11124A

    51. [51]

      Pacheco-Liňán, P.; Moral, M.; Nueda, M. L.; Cruz-Sánchez, R.; Fernández-Sainz, J.; Garzón-Ruiz, A.; Bravo, I.; Melguizo, M.; Laborda, J.; Albaladejo, J. Phys. Chem. C 2017, 121, 24786.  doi: 10.1021/acs.jpcc.7b07839

    52. [52]

      You, S.; Cai, Q.; Müllen, K.; Yang, W.; Yin, M. Chem. Commun. 2014, 50, 823.  doi: 10.1039/C3CC48046A

    53. [53]

      Roy, A.; Saha, T.; Talukdar, P. Tetrahedron Lett. 2015, 56, 4975.  doi: 10.1016/j.tetlet.2015.06.086

    54. [54]

      Cho, E. J.; Yeo, H. M.; Ryu, B. J.; Jeong, H. A.; Nam, K. C. Bull. Korean Chem. Soc. 2006, 27, 1967.  doi: 10.5012/bkcs.2006.27.12.1967

    55. [55]

      Chen, Z.; Wang, L.; Zou, G.; Zhang, L.; Zhang, G.; Cai, X.; Teng, M. Dyes Pigm. 2012, 94, 410.  doi: 10.1016/j.dyepig.2012.01.024

    56. [56]

      Li, G.; Zhao, Y.; Li, J.; Cao, J.; Zhu, J.; Sun, X.; Zhang, Q. J. Org. Chem. 2015, 80, 196.  doi: 10.1021/jo502296z

    57. [57]

      Wang, R.; Li, J.; Li, G.; Hao, C.; Zhang, Y.; Wang, S.; Zhao, J.; Liu, Q.; Shi, Z. Dyes Pigm. 2018, 156, 225.  doi: 10.1016/j.dyepig.2018.04.012

    58. [58]

      Maiti, D. K.; Roy, S.; Datta, A.; Banerjee, A. Chem. Phys. Lett. 2013, 588, 76.  doi: 10.1016/j.cplett.2013.09.056

    59. [59]

      Googson, F.; Panda, D.; Ray, S.; Mitra, A.; Guha, S.; Saha, S. Org. Biomol. Chem. 2013, 11, 4797.  doi: 10.1039/c3ob40703a

    60. [60]

      Du, F.; Bao, Y.; Liu, B.; Tian, J.; Li, Q.; Bai, R. Chem. Commun. 2013, 49, 4631.  doi: 10.1039/c3cc40810h

    61. [61]

      Gao, T.; Zhou, W.; Zhao, Y.; Chang, W.; Musendo, R.; Chen, E.; Song, Y.; Ren, X. Chem. Commun. 2019, 55, 3012.  doi: 10.1039/C8CC09725A

    62. [62]

      Sudhakar, P.; Neena, K.; Thilagar, P. Dalton Trans. 2019, 48, 7218.  doi: 10.1039/C8DT04005B

    63. [63]

      Fu, Y.; Tang, H.; Liu, Z.; Zhang, W. X.; Ren, J. Chin. J. Org. Chem. 2018, 38, 1806 (in Chinese).
       

    64. [64]

      Liu, Y.; Wang, K.; Guo, D.; Jiang, B. Adv. Funct. Mater. 2009, 19, 2230.  doi: 10.1002/adfm.200900221

    65. [65]

      Peng, H.; Ding, L.; Liu, T.; Chen, X.; Li, L.; Yin, S.; Fang, Y. Chem.-Asian J. 2012, 7, 1576.  doi: 10.1002/asia.201100958

    66. [66]

      Zhang, J.; Liu, K.; Wang, G.; Shang, C.; Peng, H.; Liu, T.; Fang, Y. New J. Chem. 2018, 42, 12737.  doi: 10.1039/C8NJ02540A

    67. [67]

      Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149.  doi: 10.1002/adfm.201200973

    68. [68]

      Deng, Q.; Zhou, E.; Huang, Y.; Qing, W.; Zhai, H.; Liu, Z.; Wei, Z. Chem. Commun. 2019, 55, 4379.  doi: 10.1039/C9CC01443H

    69. [69]

      Ji, S.; Wang, H.; Wang, T.; Yan, D. Adv. Mater. 2013, 25, 1755.  doi: 10.1002/adma.201204134

    70. [70]

      Kalita, A.; Hussain, S.; Malik, A. H.; Subbarao, N. V. V.; Iyer, P. K. J. Mater. Chem. C 2015, 3, 10767.
       

    71. [71]

      Huang, Y.; Liu, X.; Wang, Q.; Fu, J.; Zhao, L.; Liu, Z.; Jin, D. J. Mater. Chem. C 2017, 5, 7644.  doi: 10.1039/C7TC02580G

    72. [72]

      Wang, J.; He, E.; Liu, X.; Yu, L.; Wang, H.; Zhang, H.; Zhang, H. Sens. Actuators, B 2017, 239, 898.  doi: 10.1016/j.snb.2016.08.090

    73. [73]

      Wang, K.; Yang, H.; Qian, X.; Xue, Z.; Li, Y.; Liu, H.; Li, Y. Dalton Trans. 2014, 43, 11542.  doi: 10.1039/C4DT00962B

    74. [74]

      Liu, X.; Zhai, H.; Zhang, S.; Fu, J.; Huang, Y. Sens. Actuators, B 2017, 243, 500.  doi: 10.1016/j.snb.2016.12.020

    75. [75]

      Zhu, P.; Wang, Y.; Ma, P.; Li, S.; Fan, F.; Cui, K.; Ge, S.; Zhang, Y.; Yu, J. Anal. Chem. 2019, 91, 5591.  doi: 10.1021/acs.analchem.8b04497

    76. [76]

      Acikbas, Y.; Erdogan, M.; Capan, R.; Yukruk, F. Sens. Actuators, B 2014, 200, 61.  doi: 10.1016/j.snb.2014.04.051

    77. [77]

      Sun, Q.; Lü, Y.; Liu, L.; Liu, K.; Miao, R.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 29128.  doi: 10.1021/acsami.6b08642

    78. [78]

      Abdalla, M. A.; Bayer, J.; Rödler, J. O.; Müllen, K. Angew. Chem., Int. Ed. 2004, 43, 3967.  doi: 10.1002/anie.200353621

    79. [79]

      Aubert, Y.; Asseline, U. Org. Biomol. Chem. 2004, 2, 3496.  doi: 10.1039/B410695D

    80. [80]

      Rahe, N.; Rinn, C.; Carell, T. Chem. Commun. 2003, 2120.
       

    81. [81]

      Bevers, S.; Schutte, S.; Mclaughlin, L. W. J. Am. Chem. Soc. 2000, 122, 5905.  doi: 10.1021/ja0001714

    82. [82]

      Zheng, Y.; Long, H.; Schatz, G. C.; Lewis, F. D. Chem. Commun. 2005, 4795.

    83. [83]

      Wagner, C.; Wagenknecht, H.-A. Org Lett. 2006, 8, 4191.  doi: 10.1021/ol061246x

    84. [84]

      Wang, Y.; Chen, J.; Jiao, H.; Chen, Y.; Li, W.; Zhang, Q.; Yu, C. Chem.-Eur. J. 2013, 19, 12846.  doi: 10.1002/chem.201203998

    85. [85]

      Chen, J.; Jiao, H.; Li, W.; Liao, D.; Zhou, H.; Yu, C. Chem.-Asian J. 2013, 8, 276.  doi: 10.1002/asia.201200880

    86. [86]

      Chen, X.; Jou, M. J.; Yoon, J. Org. Lett. 2009, 11, 2181.  doi: 10.1021/ol9004849

    87. [87]

      Yan, L.; Ye, Z.; Peng, C.; Zhang, S. Tetrahedron 2012, 68, 2725.  doi: 10.1016/j.tet.2012.01.028

    88. [88]

      Li, Y.; Yin, S.; Hou, J.; Meng, L.; Gao, M.; Sun, Y.; Zhang, C.; Bai, S.; Ren, J.; Yu, C. Analyst 2019, 144, 2034.  doi: 10.1039/C8AN02231C

    89. [89]

      Wang, K.; An, H.; Rong, Z.; Cao, Z.; Li, X. Biosens. Bioelectron. 2014, 58, 27.  doi: 10.1016/j.bios.2014.02.038

    90. [90]

      Lin, Y.; Chapman, R.; Stevens, M. M. Anal. Chem. 2014, 86, 6410.  doi: 10.1021/ac500777r

    91. [91]

      D'Autréaux, B.; Toledano, M. B. J. Nat. Rev. Mol. Cell Biol. 2007, 8, 813.
       

    92. [92]

      Weinstain, R.; Savariar, E. N.; Felsen, C N.; Tsien, R. Y. J. Am. Chem. Soc. 2014, 136, 874.  doi: 10.1021/ja411547j

    93. [93]

      Sundaresan, M.; Yu, Z.; Finkel, T. Science 1995, 270, 296.  doi: 10.1126/science.270.5234.296

    94. [94]

      Ohshima, H.; Tatemichi, M.; Sawa, T. J. Arch. Biochem. Biophys. 2003, 417, 3.  doi: 10.1016/S0003-9861(03)00283-2

    95. [95]

      Shah, A. M.; Channon, K. M. J. Heart 2004, 90, 486.  doi: 10.1136/hrt.2003.029389

    96. [96]

      Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discovery 2004, 3, 205.  doi: 10.1038/nrd1330

    97. [97]

      Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakano, K.; Irie, M.; Imato, T. Bioorg. Med. Chem. Lett. 2006, 16, 2943.  doi: 10.1016/j.bmcl.2006.02.078

    98. [98]

      Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T. Org. Biomol. Chem. 2007, 5, 3762.  doi: 10.1039/b713223a

    99. [99]

      Maki, T.; Soh, N.; Fukaminato, T.; Nakajima, H.; Nakano, K.; Imato, T. Anal. Chim. Acta 2009, 639, 78.  doi: 10.1016/j.aca.2009.02.044

    100. [100]

      Kaloyanova, S.; Zagraanyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K, J. Am. Chem. Soc. 2016, 138, 2881.  doi: 10.1021/jacs.5b10425

    101. [101]

      Ou, Z.; Feng, Z.; Liu, G.; Chen, Y.; Gao, Y.; Li, Y.; Wang, X. Chem. Lett. 2015, 44, 425.  doi: 10.1246/cl.141045

    102. [102]

      Gao, Y.-Y.; Cai, W. J.; Ou, Z. Z.; Ma, T. T.; Wang, Z. J.; Xu, M. H. Imaging Sci. Photochem. 2017, 35, 552 (in Chinese).  doi: 10.7517/j.issn.1674-0475.2017.04.017

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    7. [7]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    8. [8]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    9. [9]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    19. [19]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    20. [20]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

Metrics
  • PDF Downloads(105)
  • Abstract views(5012)
  • HTML views(2019)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return