Citation: Wang Shaohua, Zhang Banghong, Chen Jie, Zheng Yingying, Feng Na, Ma Aijun, Xu Xuetao, Abdullah M. Asiri. Recent Progress in Synthesis of Polysubstituted Pyrazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(1): 15-27. doi: 10.6023/cjoc201906007 shu

Recent Progress in Synthesis of Polysubstituted Pyrazoles

  • Corresponding author: Ma Aijun, maaijun@wyu.edu.cn Xu Xuetao, xuetaoxu@wyu.edu.cn
  • Received Date: 6 June 2019
    Revised Date: 1 September 2019
    Available Online: 5 January 2019

    Fund Project: the High-level Talent Research Start-up Project of Wuyi University 2018AL003the Department of Education of Guangdong Province 2017KSYS010the the National Natural Science Foundation of China 21472077the the National Natural Science Foundation of China 21772071the Department of Education of Guangdong Province 2017KTSCX185the Department of Education of Guangdong Province 2016KCXTD005Project supported by the the National Natural Science Foundation of China (Nos. 21472077, 21772071), the Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005), and the High-level Talent Research Start-up Project of Wuyi University (Nos. 2018AL002, 2018AL003)the High-level Talent Research Start-up Project of Wuyi University 2018AL002

Figures(21)

  • Pyrazole, an important class of nitrogen-containing five-member hetrocyclic compounds, widely exists in natural products, bio-active molecules and drugs, and it is also a valuable intermediate in organic synthesis. The synthesis of polysubstituted pyrazoles has attracted much attention and developed rapidly in recent years. Herein, the recent research progress in the construction of polysubstituted pyrazoles is summarized.
  • 加载中
    1. [1]

      (a) Dedeian, K.; Shi, J.; Shepherd, N.; Forsythe, E.; Morton, D. C. Inorg. Chem. 2005, 44, 4445.
      (b) Chang, S. Y.; Chen, J. L.; Chi, Y.; Cheng, Y. M.; Lee, G. H.; Jiang, C. M.; Chou, P. T. Inorg. Chem. 2007, 46, 11202.
      (c) Cavero, E.; Uriel, S.; Romero, P.; Serrano, J. L.; Giménez, R. J. Am. Chem. Soc. 2007, 129, 11608.
      (d) Ye, C.; Gard, G. L.; Winter, R. W.; Syvret, R. G.; Twamley, B.; Shreeve, J. M. Org Lett. 2007, 9, 3841.
      (e) Yang, L.; Okuda, F.; Kobayashi, K.; Nozaki, K.; Tanabe, Y.; Ishii, Y.; Haga, M. Inorg Chem. 2008, 47, 7154.
      (f) Seltzman, H. H. Drug Dev. Res. 2009, 70. 601.
      (g) Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133, 7222.
      (h) Jones, L. H.; Allan, G.; Corbau, R.; Middleton, D. S.; Mowbray, C. E.; Newman, S. D.; Phillips, C.; Webster, R.; Westby, M. Chem. Biol. Drug Des. 2011, 77, 393.
      (i) Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Eur. J. Med. Chem. 2013, 69, 735.

    2. [2]

      (a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159.
      (b) Rosiak, A.; Hoenke, C.; Christoffers, J. Eur. J. Org. Chem. 2007, 26, 4376.
      (c) Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. Chem. Rev. 2011, 111, 6984.
      (d) Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. Chem. Commun. 2011, 47, 10133.
      (e) Lominac, W. J.; D'Angelo, M. L.; Smith, M. D.; Ollison, D. A.; Hanna, J. J. M. Tetrahedron Lett. 2012, 53, 906.
      (f) Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu. Q. Org Lett. 2014, 16, 4702.
      (g) Tang, M.; Kong, Y.; Chu, B.; Feng, D. Adv. Synth. Catal. 2016, 358, 926.

    3. [3]

      Geng, R.; Zhao, Y.; Li, Y.; Liu, X.; Wang, M. Chin. J. Org. Chem. 2019, 39, 3574(in Chinese).
       

    4. [4]

      Zhong, L.; Jiang, T.; Zhang, F.; Fu, Q.; Liu, X.; Xu, T.; Ding, C.; Chen, J.; Yuan, J.; Tan, C. Chin. J. Org. Chem. 2019, 39, 2655(in Chinese).
       

    5. [5]

      Gong, C. C.; Tan, H. Y.; Zhang, Q. Chin. J. Org. Chem. 2018, 38, 3086(in Chinese).
       

    6. [6]

      He, B.; Wang, D. W.; Yang, W. C.; Chen, Q.; Yang, G. F. Chin. J. Org. Chem. 2017, 37, 2895(in Chinese).
       

    7. [7]

      Zhong, Y. Y.; Yu, L. J.; He, Q. Y.; Zhu, Q. Y.; Zhang, C. G.; Cui, X. P.; Zheng, J. X.; Zhao, S. Q. ACS Appl. Mater. Inter. 2019, 11, 32769.  doi: 10.1021/acsami.9b11754

    8. [8]

      Sun, N. B.; Shen, Z. H.; Zhai, Z. W.; Han, L.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Chin. J. Org. Chem. 2017, 37, 2705(in Chinese).
       

    9. [9]

      Shi, Y. J.; Zhou, Q.; Wang, Y.; Qian, H. W.; Ye, L. Y.; Feng, X.; Chen, H.; Li, Y. T.; Dai, H.; Wei, Z. H.; Wu, J. M. Chin. J. Org. Chem. 2018, 38, 2450(in Chinese).
       

    10. [10]

      Zhu, Q.; Yang, Y.; Lao, Z.; Zhong, Y.; Zhang, B.; Cui, X.; O'Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Pest. Manage. Sci. 2019, DOI:10.1002/ps.5559.  doi: 10.1002/ps.5559

    11. [11]

      Abd El Razik, H. A.; Badr, M. H.; Atta, A. H.; Mouneir, S. M.; Abu-Serie, M. M. Arch. Pharm. 2017, 350, e1700026.  doi: 10.1002/ardp.201700026

    12. [12]

      Schmidt, A.; Dreger, A. Curr. Org. Chem. 2011, 15, 1423.  doi: 10.2174/138527211795378263

    13. [13]

      (a) Bekhit, A. A.; Abdel-Aziem, T. Bioorg. Med. Chem. 2004, 12, 1935.
      (b) Selvam, C.; Jachak, S. M.; Thilagavathi, R.; Chakraborti, A. K. Bioorg. Med. Chem. Lett. 2005, 15, 1793.
      (c) El-Sayed, M. A. A.; Abdel-Aziz, N. I.; Abdel-Aziz, A. A. M.; El-Azab, A. S.; ElTahir, K. E. H. Bioorg. Med. Chem. 2012, 20, 3306.

    14. [14]

      Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. J. Med. Chem. 2004, 47, 3693.  doi: 10.1021/jm030394f

    15. [15]

      Bhosle, M. R.; Mali, J. R.; Pal, S.; Srivastava, A. K.; Mane, R. A. Bioorg. Med. Chem. Lett. 2014, 24, 2651.  doi: 10.1016/j.bmcl.2014.04.064

    16. [16]

      Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.  doi: 10.1021/jm960803q

    17. [17]

      Cox, S. R.; Lesman, S. P.; Boucher, J. F.; Krautmann, M. J.; Hummel, B. D.; Savides, M.; Marsh, S.; Fielde, A.; Stegemann, M. R. J. Vet. Pharmacol. Ther. 2010, 33, 461.  doi: 10.1111/j.1365-2885.2010.01165.x

    18. [18]

      Zhang, D.; Raghavan, N.; Chen, S. Y.; Zhang, H.; Quan, M.; Lecureux, L.; Patrone, L. M.; Lam, P. Y. S.; Bonacorsi, S. J.; Knabb, R. M.; Skiles, G. S.; He, K. Drug Metab. Dispos. 2008, 36, 303.  doi: 10.1124/dmd.107.018416

    19. [19]

      Lange, J. H. M.; van Stuivenberg, H. H.; Coolen, H. K. A. C.; Adolfs, T. J. P.; McCreary, A. C.; Keizer, H. G.; Wals, H. C.; Veerman, W.; Borst, A. J. M.; de Looff, W.; Verveer, P. C.; Kruse, C. G. J. Med. Chem. 2005, 48, 1823.  doi: 10.1021/jm040843r

    20. [20]

      Graneto, M. J.; Kurumbail, R. G.; Vazquez, M. L.; Shieh, H. S.; Pawlitz, J. L.; Williams, J. M.; Stallings, W. C.; Geng, L.; Naraian, A. S.; Koszyk, F. J.; Stealey, M. A.; Xu, X. D.; Weier, R. M.; Hanson, G. J.; Mourey, R. J.; Compton, R. P.; Mnich, S. J.; Anderson, G. D.; Monahan, J. B.; Devraj, R. J. Med. Chem. 2007, 50, 5712.  doi: 10.1021/jm0611915

    21. [21]

      Barth, F.; Rinaldi-Carmona, M. Curr. Med. Chem. 1999, 6, 745.

    22. [22]

      Cox, B. D.; Prosser, A. R.; Sun, Y.; Li, Z.; Lee, S.; Huang, M. B.; Bond, V. C.; Snyder, J. P.; Krystal, M.; Wilson, L. J.; Liotta, D. C. ACS Med. Chem. Lett. 2015, 6, 753.  doi: 10.1021/acsmedchemlett.5b00036

    23. [23]

      Labroli, M. A.; Dwyer, M. P.; Poker, C.; Keertikar, K. M.; Rossman, R.; Guzi, T. J. Tetrahedron Lett. 2016, 57, 2601.  doi: 10.1016/j.tetlet.2016.04.102

    24. [24]

      Knorr, L. Ber. Dtsch. Chem. Ges. 1883, 16, 2593.  doi: 10.1002/cber.188301602193

    25. [25]

      Singh, S. P.; Kumar, D.; Batra, H.; Naithani, R.; Rozas, I.; Elguero, J. Can. J. Chem. 2000, 78, 1109.  doi: 10.1139/v00-104

    26. [26]

      Oliveira, D. H.; Aquino, T. B.; Nascimento, J. E. R.; Perin, G.; Jacob, R. G.; Alves, D. Adv. Synth. Catal. 2015, 357, 4041.  doi: 10.1002/adsc.201500625

    27. [27]

      Zora, M.; Demirci, D.; Kivrak, A.; Kelgokmen, Y. Tetrahedron Lett. 2016, 57, 993.  doi: 10.1016/j.tetlet.2016.01.071

    28. [28]

      Sun, P.; Yang, D.; Wei, W.; Sun, X.; Zhang, W.; Zhang, H.; Wang, Y.; Wang, H. Tetrahedron 2017, 73, 2022.  doi: 10.1016/j.tet.2017.02.046

    29. [29]

      Kalita, S. J.; Bayan, R.; Devi, J.; Brahma, S.; Mecadon, H.; Deka, D. C. Tetrahedron Lett. 2017, 58, 566.  doi: 10.1016/j.tetlet.2016.12.084

    30. [30]

      Zhang, H.; Wei, Q.; Zhu, G.; Qu, J.; Wang, B. Tetrahedron Lett. 2016, 57, 2633.  doi: 10.1016/j.tetlet.2016.05.020

    31. [31]

      Markovic, V.; Joksovic, M. D. Green Chem. 2015, 17, 842.  doi: 10.1039/C4GC02028F

    32. [32]

      Vekariya, R. H.; Patel, K. D.; Patel, H. D. Res. Chem. Intermed. 2016, 42, 4683.  doi: 10.1007/s11164-015-2308-7

    33. [33]

      Saha, A.; Payra, S.; Banerjee, S. Green Chem. 2015, 17, 2859.  doi: 10.1039/C4GC02420F

    34. [34]

      Sun, A.; Ye, J. H.; Yu, H.; Zhang, W.; Wang, X. Tetrahedron Lett. 2014, 55, 889.  doi: 10.1016/j.tetlet.2013.12.045

    35. [35]

      Kong, Y.; Tang, M.; Wang, Y. Org. Lett. 2014, 16, 576.  doi: 10.1021/ol403447g

    36. [36]

      Tang, M.; Wang, Y.; Wang, H.; Kong, Y. Synthesis 2016, 48, 3065.  doi: 10.1055/s-0035-1561646

    37. [37]

      Senadi, G. C.; Hu, W. P.; Lu, T. Y.; Garkhedkar, A. M.; Vandavasi, J. K.; Wang, J. J. Org Lett. 2015, 17, 1521.  doi: 10.1021/acs.orglett.5b00398

    38. [38]

      Alizadeh, A.; Moafi, L.; Zhu, L. G. Synlett 2016, 27, 595.

    39. [39]

      Shi, C.; Ma, C.; Ma, H.; Zhou, X.; Cao, J.; Fan, Y.; Huang, G. Tetrahedron 2016, 72, 4055.  doi: 10.1016/j.tet.2016.05.034

    40. [40]

      Yu, Y.; Huang, W.; Chen, Y.; Gao, B.; Wu, W.; Jiang, H. Green Chem. 2016, 18, 6445.  doi: 10.1039/C6GC02776H

    41. [41]

      Mukherjee, S.; Kundu, A.; Pramanik, A. Tetrahedron Lett. 2016, 57, 2103.  doi: 10.1016/j.tetlet.2016.04.002

    42. [42]

      Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. Org. Lett. 2013, 15, 5967.  doi: 10.1021/ol402810f

    43. [43]

      Zhang, J.; Chen, W.; Huang, D.; Zeng, X.; Wang, X.; Hu, Y. Tetrahedron Lett. 2017, 58, 4133.  doi: 10.1016/j.tetlet.2017.09.050

    44. [44]

      Kumar, R.; Nair, D.; Namboothiri, I. N. N. Tetrahedron 2014, 70, 179.

    45. [45]

      Nair, D.; Pavashe, P.; Katiyar, S.; Namboothiri, I. N. N. Tetrahedron Lett. 2016, 57, 3146.  doi: 10.1016/j.tetlet.2016.06.020

    46. [46]

      Ahamad, S.; Gupta, A. K.; Kant, R.; Mohanan, K. Org. Biomol. Chem. 2015, 13, 1492.  doi: 10.1039/C4OB02365J

    47. [47]

      Shao, Y.; Tong, J.; Zhao, Y.; Zheng, H.; Ma, L.; Ma, M.; Wan, X. Org. Biomol. Chem. 2016, 14, 8486.  doi: 10.1039/C6OB01522K

    48. [48]

      (a) Yuan, B.; Zhang, F.; Li, Z.; Yang, S.; Yan, R. Org. Lett. 2016, 18, 5928.
      (b) Unnava, R.; Saikia A. K. ChemistrySlect 2016, 1, 1816.

    49. [49]

      Yadav, S.; Rai, P.; Srivastava, M.; Singh, J.; Tiwari, K. P.; Singh, J. Tetrahedron Lett. 2015, 56, 5831.  doi: 10.1016/j.tetlet.2015.07.039

    50. [50]

      Cheng, J.; Li, W.; Duan, Y.; Cheng, Y.; Yu, S.; Zhu, C. Org. Lett. 2017, 19, 214.  doi: 10.1021/acs.orglett.6b03497

    51. [51]

      Dhage, Y. D.; Daimon, H.; Peng, C.; Kusakabe, T.; Takahashi, K.; Kanno, Y.; Inouye, Y.; Kato, K. Org. Biomol. Chem. 2014, 12, 8619.  doi: 10.1039/C4OB01576B

    52. [52]

      Li, D. Y.; Mao, X. F.; Chen, H. J.; Chen, G. R.; Liu, P. N. Org. Lett. 2014, 16, 3476.  doi: 10.1021/ol501402p

    53. [53]

      Tu, Y.; Zhang, Z.; Wang, T.; Ke, J.; Zhao, J. Org. Lett. 2017, 19, 3466.  doi: 10.1021/acs.orglett.7b01447

    54. [54]

      Zhu, Y.; Lu, W. T.; Sun, H. C.; Zhan, Z. P. Org. Lett. 2013, 15, 4146.  doi: 10.1021/ol401818m

    55. [55]

      Yang, Y.; Hu, Z. L.; Li, R. H.; Chen, Y. H.; Zhan, Z. P. Org. Biomol. Chem. 2018, 16, 197.  doi: 10.1039/C7OB02576A

    56. [56]

      Schmitt, D. C.; Taylor, A. P.; Flick, A. C.; Kyne, R. E. Org. Lett. 2015, 17, 1405.  doi: 10.1021/acs.orglett.5b00266

    57. [57]

      Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Chem. Commun. 2014, 50, 7677.  doi: 10.1039/c4cc02856b

    58. [58]

      Tang, X.; Huang, L.; Yang, J.; Xu, Y.; Wu, W.; Jiang, H. Chem. Commun. 2014, 50, 14793.  doi: 10.1039/C4CC06747A

    59. [59]

      Mamaghani, M.; Hossein, R.; Shirini, F.; Tabatabaeian, K.; Rassa, M. Med. Chem. Res. 2015, 24, 1916.  doi: 10.1007/s00044-014-1271-y

    60. [60]

      Karnakar, K.; Ramesh, K.; Reddy, K. H. V.; Anil Kumar, B. S. P.; Nanubonula, J. B.; Nageswar, Y. V. D. New J. Chem. 2015, 39, 8978.  doi: 10.1039/C5NJ01448D

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    11. [11]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    19. [19]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(99)
  • Abstract views(3215)
  • HTML views(1300)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return