Citation: Li Yingjun, Yang Kaidong, Jin Kun, Gao Lixin, Sheng Li, Liu Xuejie, Yang Hongjing, Lin Ledi, Li Jia. Synthesis and Cdc25B/PTP1B Inhibitory Activity Evaluation of Novel Carbazole-Based Mono-/Bis-thiocarbohydrazone Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(1): 162-174. doi: 10.6023/cjoc201905043 shu

Synthesis and Cdc25B/PTP1B Inhibitory Activity Evaluation of Novel Carbazole-Based Mono-/Bis-thiocarbohydrazone Derivatives

  • Corresponding author: Li Yingjun, jli@simm.ac.cn Li Jia, jli@simm.ac.cn
  • Received Date: 21 May 2019
    Revised Date: 2 August 2019
    Available Online: 12 January 2019

    Fund Project: the Natural Science Foundation of Liaoning Province 20102126Project supported by the Natural Science Foundation of Liaoning Province (No. 20102126)

Figures(10)

  • A series of novel carbazole-based mono-/bis-thiocarbohydrazone derivatives were synthesized. Their structures were characterized by IR, 1H NMR, 13C NMR spectra and elemental analysis. The inhibitory activities of the target compounds against Cdc25B/PTP1B were evaluated, and the relationship between structure and activity was discussed. The results showed that most of the target compounds had good inhibitory activity against Cdc25B and PTP1B. Among them, 1, 5-bis[(9-pentyl-3-carbazolyl)methylene]thiocarbohydrazone (4d) had the highest inhibitory activity against Cdc25B with IC50=(0.23±0.02) μg/mL, and 1, 5-bis[(9-ethyl-3-carbazolyl)methylene]thiocarbohydrazone (4a) had the highest inhibitory activity against PTP1B with IC50=(1.00±0.16) μg/mL. Molecular docking and density functional theory (DFT) calculations of the target compounds 4a and 4d were performed. Molecular docking results indicated that the target compounds 4d and 4a entered the active sites of Cdc25B and PTP1B enzymes, respectively, and thiocarbohydrazone and carbazole groups play the importent role of activity.
  • 加载中
    1. [1]

      Li, Q. H.; Chin. Chem. Lett. 2009, 20, 793.  doi: 10.1016/j.cclet.2009.03.013

    2. [2]

      Riyadh, S. M.; Gomha, S. M.; Mahmmoud, E. A. World J. Pharm. Pharm. Sci. 2015, 4, 192.

    3. [3]

      Brockman, R. W.; Thormson, J. R.; Bell, M. J.; Skipper, H. E. Cancer Res. 1956, 16, 167.

    4. [4]

      Gangarapu, K.; Manda, S.; Jallapally, A.; Thota, S.; Karki, S. S.; Balzarini, J.; Clercq, E. D.; Tokudaet, H. Med. Chem. Res. 2013, 23, 1046.

    5. [5]

      Božić, A.; Marinković, A.; Bjelogrlić, S.; Todorović, T. R.; Cvijetić, I. N.; Novaković, I.; Muller, C. D.; Filipović, N. R. RSC Adv. 2016, 6, 104763.  doi: 10.1039/C6RA23940D

    6. [6]

      Sathisha, M. P.; Revankar, V. K.; Pai, K. S. R. Met.-Based Drugs 2008, 2008, 362105.

    7. [7]

      Gabr, M. T.; El-Gohary, N. S.; El-Bendary, E. R.; El-Kerdawy, M. M.; Ni, N. Eur. J. Med. Chem. 2017, 128, 36.  doi: 10.1016/j.ejmech.2017.01.030

    8. [8]

      Tejasree, C.; Kiran, G.; Rajyalakshmi, G.; Reddy, R. N. Eur. J. Med. Chem. 2014, 5, 2738.

    9. [9]

      Kiran, G.; Maneshwar, T.; Rajeshwar, Y.; Sarangapani, M. J. Chem. 2013, 2013, 1.

    10. [10]

      Li, L.; Jiang, Y. J.; Liu, X. L.; Zhao, Z. G. J. Chem. Res. 2013, 37, 372.  doi: 10.3184/174751913X13688155249983

    11. [11]

      Shi, Z. C.; Zhao, Z. G.; Liu, M.; Wang, X. H. C. R. Chim. 2013, 16, 977.  doi: 10.1016/j.crci.2013.05.009

    12. [12]

      Zhang, L. N.; Zhao, Z. G.; Tan, J.; Li, H. Chin. J. Synth. Chem. 2015, 23, 677(in Chinese).

    13. [13]

      Qiu, L. Y.; Zhao, Z. G.; Li, L.; Zhang, L. N. Chin. J. Synth. Chem. 2014, 22, 293(in Chinese).  doi: 10.3969/j.issn.1005-1511.2014.03.003

    14. [14]

      Vlaar, C. P.; Castillo-Pichardo, L.; Medina, J. I.; Marrero-Serra, C. M.; Vélez, E.; Ramos, Z.; Hernándezet, E. Bioorg. Med. Chem. 2018, 26, 884.  doi: 10.1016/j.bmc.2018.01.003

    15. [15]

      Montalvo-Ortiz, B. L.; Castillo-Pichardo, L.; Hernández, E.; Humphries-Bickley, T.; Mota-Peynado, A. D. L.; Cobano, L. A.; Vlaar, C. P.; Dharmawardhane, S. J. Biol. Chem. 2012, 287, 13228.  doi: 10.1074/jbc.M111.334524

    16. [16]

      Kaulage, M. H.; Maji, B.; Pasadi, S.; Ali, A.; Bhattacharya, S.; Muniyappa, K. Eur. J. Med. Chem. 2018, 148, 178.  doi: 10.1016/j.ejmech.2018.01.091

    17. [17]

      Humphries, P. S.; Bersot, R.; Kincaid, J.; Mabery, E.; McCluskie, K.; Park, T.; Renner, T.; Riegler, E.; Steinfeld, T.; Turtle, E. D.; Wei, Z. L.; Williset, E. Bioorg. Med. Chem. Lett. 2018, 28, 293.  doi: 10.1016/j.bmcl.2017.12.051

    18. [18]

      Kim, J.; Jung, S. H.; Yun, E.; Cho, S. H.; Yuseok, O.; Kim, J. E.; Kim, Y. H.; Myung, C. S.; Song, G. Y. Bull. Korean. Chem. Soc. 2018, 39, 726.  doi: 10.1002/bkcs.11462

    19. [19]

      Wang, W.; Li, Q.; Wei, Y.; Xue, J.; Sun, X.; Yu, Y.; Chen, Z.; Li, S.; Duan, L. Int. J. Parasitol. Drugs and Drug Resist. 2017, 7, 191.  doi: 10.1016/j.ijpddr.2017.03.007

    20. [20]

      Saturnino, C.; Grande, F.; Aquaro, S.; Caruso, A.; Iacopetta, D.; Bonomo, M. G.; Longo, P.; Schols, D.; Sinicropi, M. S. Molecules 2018, 23, 286.  doi: 10.3390/molecules23020286

    21. [21]

      Mahapatra, D. K.; Shivhare, R. S.; Haldar, A. G. M. Asian. J. Chem. Pharm. Sci. 2017, 2, 10.  doi: 10.18311/ajcps/2017/15496

    22. [22]

      Schmidt, U.; Theumer, G.; Jäger, A.; Kataeva, O.; Wan, B. J.; Franzblau, S. G.; Knölker, H. J. Molecules 2018, 23, 1402.  doi: 10.3390/molecules23061402

    23. [23]

      Salih, N.; Salimon, J.; Yousif, E. Arabian J. Chem. 2016, 9, 781.  doi: 10.1016/j.arabjc.2011.08.013

    24. [24]

      Kaplanckl, Z. A. Marmara Pharm. J. 2011, 15, 105.

    25. [25]

      Mahapatra1, D. K.; Shivhare, R. S.; Dadure, K. M. Acta. Sci. Pharm. Sci. 2018, 2, 40.

    26. [26]

      Kaur, H.; Kumar, S.; Vishwakarma, P.; Sharma, M.; Saxena, K. K.; Kumar, A. Eur. J. Med. Chem. 2010, 45, 2777.  doi: 10.1016/j.ejmech.2010.02.060

    27. [27]

      Dang, Z. S.; Xu, S.; Zhang, H. B.; Gui, W. F.; Zhao, Y. N.; Duan, L. P.; Hu, W. Acta Trop. 2018, 185, 138.  doi: 10.1016/j.actatropica.2018.05.007

    28. [28]

      Li, Y.; Huang, Y. X.; Lu Q.; Li Y. M. Chin. J. Mod. Nurs. 2018, 24, 3172(in Chinese).  doi: 10.3760/cma.j.issn.1674-2907.2018.26.017

    29. [29]

      Wang, G. C.; Chen, M.; Qiu, J.; Xie, Z. Z.; Cao, A. B. Bioorg. Med. Chem. Lett. 2018, 28, 113.  doi: 10.1016/j.bmcl.2017.11.047

    30. [30]

      Xu H. M.; Mu C.; Bao D.; Xing Q. L. Chin. J. Diabetes Mellitus 2018, 10, 735(in Chinese).  doi: 10.3760/cma.j.issn.1674-5809.2018.11.009

    31. [31]

      Evain-Bana, E.; Schiavo, L.; Bour, C.; Lanfranchi, D. A.; Berardozzi, S.; Ghirga, F.; Bagrel, D.; Botta, B.; Hanquet, G.; Mori, M. J. Enzyme Inhib. Med. Chem. 2017, 32, 113.  doi: 10.1080/14756366.2016.1238364

    32. [32]

      Ma, Y.; Li, H. L.; Chen, X. B.; Jin, W. Y.; Zhou, H.; Wang, R. L. Comput. Biol. Chem. 2018, 73, 1.  doi: 10.1016/j.compbiolchem.2018.01.005

    33. [33]

      Li, Y. J.; Yu, Y.; Jin, K.; Gao, L. X.; Luo, T. C.; Sheng, L.; Shao, X.; Li, J. Bioorg. Med. Chem. Lett. 2014, 24, 4125.  doi: 10.1016/j.bmcl.2014.07.055

    34. [34]

      Liu, J.; Wang, Y. L.; Zhang, J. H.; Yang, J. S.; Mou, H. C.; Lin, J.; Yan S. J. ACS Omega 2018, 3, 4534.  doi: 10.1021/acsomega.8b00640

    35. [35]

      Xiao, Y. J.; Yu, Y.; Gao, D.; Jin, W. R.; Jiang, P. C.; Li, Y. H.; Wang, C.; Song, Y. N.; Zhan, P.; Gu, F.; Zhang, C. C.; Wang, B.; Chen, Y. H.; Du, B.; Zhang, R. Front. Oncol. 2019, 9, 236.  doi: 10.3389/fonc.2019.00236

    36. [36]

      Liu, H. Y.; Sun, D. W.; Du, H.; Zheng, C. J.; Li, J. Y.; Piao, H. R.; Li, J.; Sun, L. P. Eur. J. Med. Chem. 2019, 172, 163.  doi: 10.1016/j.ejmech.2019.03.059

    37. [37]

      He, R. J.; Yu, Z. H.; Zhang, R. Y.; Zhang, Z. Y. Acta Pharmacol. Sin. 2014, 35, 1227.  doi: 10.1038/aps.2014.80

    38. [38]

      Krishnan, N.; Konidaris, K. F.; Gasser, G.; Tonk, N. K. J. Biol. Chem. 2018, 293, 1517.  doi: 10.1074/jbc.C117.819110

    39. [39]

      Li, Y. J.; Wang, S. Y.; Jin, K.; Gao, L. X.; Sheng, L.; Zhang, N.; Yang, K. D.; Zhao, Y.; Li, J. Chin. J. Org. Chem. 2018, 38, 1242(in Chinese).
       

    40. [40]

      Li, Y. J.; Wang, S. Y.; Jin, K.; Gao, L. X.; Sheng, L.; Zhang, N.; Liu, J. H.; Li, J. Chin. J. Org. Chem. 2019, 39, 491(in Chinese).
       

    41. [41]

      Li, Y. J.; Zhao, Y.; Jin, K.; Gao, L. X.; Sheng, L.; Liu, X. J.; Yang, H. J.; Lin, L. D.; Li, J. Chin. J. Org. Chem. 2019, 39, 2599(in Chinese).
       

    42. [42]

      Li, Y. Q.; Shi, W.; Ma, J. C.; Wang, X.; Kong, X. J.; Zhang, Y. P.; Feng, L.; Hui, Y. H.; Xie, Z. F. J. Photochem. Photobiol. A 2017, 338, 1.  doi: 10.1016/j.jphotochem.2017.01.026

    43. [43]

      Su, H. Y.; Li, J. W.; Lin, H.; Lin, H. K. J. Braz. Chem. Soc. 2010, 21, 541.  doi: 10.1590/S0103-50532010000300021

    44. [44]

      Murali, M. G.; Vishnumurthy, K. A.; Seethamrajub, S.; Ramamurthy, P. C. RSC Adv. 2014, 4, 20592.  doi: 10.1039/C4RA01555J

    45. [45]

      Bose, P.; Ghosh, P. Chem. Commun. 2010, 46, 2962.  doi: 10.1039/b919128c

    46. [46]

      Momidi, B. K.; Tekuri, V.; Trivedi, D. R. Spectrochim. Acta, Part A 2017, 180, 175.  doi: 10.1016/j.saa.2017.03.010

    47. [47]

      Dhineshkumar, E.; Iyappan, M.; Anbuselvan, C. Spectrochim. Acta, Part A 2018, 199, 209.  doi: 10.1016/j.saa.2018.03.053

    48. [48]

      Abdulazeez, I.; Basheer, C.; Al-Saadi, A. A. J. Mol. Liq. 2018, 264, 58.  doi: 10.1016/j.molliq.2018.05.037

    49. [49]

      Barakat, A.; Islam, M. S.; Al-Majid, A. M.; Ghabbour, H. A.; Atef, F.; Zarrouk, A.; Warad, I. J. Theor. Comput. Chem. 2018, 17, 1850005.  doi: 10.1142/S0219633618500050

    50. [50]

      Rahmani, R.; Boukabcha, N.; Chouaih, A.; Hamzaoui, F.; Goumri-Said, S. J. Mol. Struct. 2018, 1155, 484.  doi: 10.1016/j.molstruc.2017.11.033

    51. [51]

      Jagadeeswari, S.; Paramaguru, G.; Thennarasu, S.; Renganathan, R. J. Mol. Struct. 2014, 1060, 191.  doi: 10.1016/j.molstruc.2013.12.017

    52. [52]

      Huang, W. G.; Jiang, Y. Y.; Li, Q.; Li, J.; Li, J. Y.; Lu, W.; Cai, J. C. Tetrahedron 2005, 61, 1863  doi: 10.1016/j.tet.2004.12.033

    53. [53]

      Sun, L. P.; Shen, Q.; Piao, H. H.; Ma, W. P.; Gao, L. X.; Zhang, W.; Nan, F. J.; Li, J.; Piao, H. R. Eur. J. Med. Chem. 2011, 46, 3630.  doi: 10.1016/j.ejmech.2011.05.027

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    8. [8]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    17. [17]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    18. [18]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(5)
  • Abstract views(942)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return