Citation: Wu Jiacheng, Liu Zhenghui, Yao Yuan, Lin Shaoliang. Synthesis and Self-Assembly of Alternating Amphiphilic Copolymer with Azobenzene Pendants[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2952-2957. doi: 10.6023/cjoc201905019 shu

Synthesis and Self-Assembly of Alternating Amphiphilic Copolymer with Azobenzene Pendants

  • Corresponding author: Lin Shaoliang, slin@ecust.edu.cn
  • Received Date: 10 May 2019
    Revised Date: 26 May 2019
    Available Online: 28 October 2019

    Fund Project: the National Natural Science Foundation of China 51873061the National Natural Science Foundation of China 51622301Project supported by the National Natural Science Foundation of China (Nos. 51622301, 51573088, 51873061, 91834301)the National Natural Science Foundation of China 51573088the National Natural Science Foundation of China 91834301

Figures(4)

  • A novel alternating amphiphilic copolymer poly(tetra glycol-a-N, N-bis[2-(1H-1, 2, 3-triazol-1-yl)ethyl]-4-phenyl-diazenyl-aniline)[P(EG4-a-NAzo)] with azobenzene pendants was synthesized through the azide-alkyne click reaction, in which the hydrophilic unit was tetra glycol (EG4) and N, N-bis[2-(1H-1, 2, 3-triazol-1-yl)ethyl]-4-phenyldiazenyl-aniline (NAzo) performed the hydrophobic unit. P(EG4-a-NAzo) could self-assemble into worm-like aggregate in aqueous solution with initially low concentration. Because of its unique alternating topologies, the azobenzene moiety of P(EG4-a-NAzo) micelle could not pile up orderly. This novel azobenzene copolymer has arisen new thoughts and approaches for the molecular design of photo-functional polymers.
  • 加载中
    1. [1]

      (a) Thorkelsson, K.; Bai, P.; Xu, T. Nano Today 2015, 10, 48.
      (b) Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 18.

    2. [2]

      (a) Howe, D. H.; Hart, J. L.; McDaniel, R. M.; Taheri, M. L.; Magenau, A. J. ACS Macro Lett. 2018, 7, 1503.
      (b) Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.
      (c) Shen, H.; Eisenberg, A. Angew. Chem., Int. Ed. 2000, 39, 3310.
      (d) Zhang, L.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168.

    3. [3]

      (a) Gao, F.; Xing, Y.; Yao, Y.; Sun, L.; Sun, Y.; He, X.; Lin, S. Polym. Chem. 2017, 8, 7529.
      (b) Sun, L.; Gao, F.; Shen, D.; Liu, Z.; Yao, Y.; Lin, S. Polym. Chem. 2018, 9, 2977.

    4. [4]

      (a) Dong, R.; Zhu, B.; Zhou, Y.; Yan, D.; Zhu, X. Angew. Chem., Int. Ed. 2012, 51, 11633.
      (b) Ren, H.; Chen, D.; Shi, Y.; Yu, H.; Fu, Z. Polym. Chem. 2015, 6, 270.
      (c) Ren, H.; Chen, D.; Shi, Y.; Yu, H.; Fu, Z. Polymer 2016, 97, 533.

    5. [5]

      Yu, S.; Azzam, T.; Rouiller, I.; Eisenberg, A. J. Am. Chem. Soc. 2009, 131, 10557.  doi: 10.1021/ja902869q

    6. [6]

      Lv, J. A.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Nature 2016, 537, 179.  doi: 10.1038/nature19344

    7. [7]

      (a) Takeshima, T.; Liao, W. Y.; Nagashima, Y.; Beppu, K.; Hara, M.; Nagano, S.; Seki, T. Macromolecules 2015, 48, 6378.
      (b) Gao, F.; Wang, W.; Li, X.; Li, L.; Lin, J.; Lin, S. J. Colloid Interface Sci. 2016, 468, 70.
      (c) Kong, X.; Wang, X.; Luo, T.; Yao, Y.; Li, L.; Lin, S. ACS Appl. Mater. Interfaces 2017, 9, 19345.
      (d) Lee, S.; Kang, H. S.; Park, J. K. Adv. Mater. 2012, 24, 2069.
      (e) Wang, W.; Shen, D.; Li, X.; Yao, Y.; Lin, J.; Wang, A.; Yu, J.; Wang, Z. L.; Hong, S. W.; Lin, Z; Lin, S. Angew. Chem., Int. Ed. 2018, 130, 2161.
      (f) Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. Angew. Chem., Int. Ed. 2014, 126, 12312.
      (g) Fu, S.; Zhao, Y. Macromolecules 2015, 48, 5088.

    8. [8]

      Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.  doi: 10.1039/B613014N

    9. [9]

      Chen, J.; Yu, C.; Shi, Z.; Yu, S.; Lu, Z.; Jiang, W.; Zhang, M.; He, W.; Zhou, Y.; Yan, D. Angew. Chem., Int. Ed. 2015, 54, 3621.  doi: 10.1002/anie.201408290

    10. [10]

      Xu, Q.; Huang, T.; Li, S.; Li, K.; Li, C.; Liu, Y.; Wang, Y.; Yu, C.; Zhou, Y. Angew. Chem., Int. Ed. 2018, 57, 8043.  doi: 10.1002/anie.201802833

    11. [11]

      (a) Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588.
      (b) Li, Z. a.; Yu, G.; Hu, P.; Ye, C.; Liu, Y.; Qin, J.; Li, Z. Macromolecules 2009, 42, 1589.

    12. [12]

      (a) Hii, K. K.; Thornton-Pett, M.; Jutand, A.; Tooze, R. P. Organometallics 1999, 18, 1887.
      (b) Lee, S. J.; Lee, S. S.; Lee, J. Y.; Jung, J. H. Chem. Mater. 2006, 18, 4713.

    13. [13]

      Wu, S.; Yu, X.; Huang, J.; Shen, J.; Yan, Q.; Wang, X.; Wu, W.; Luo, Y.; Wang, K.; Zhang, Q. J. Mater. Chem. 2008, 18, 3223.  doi: 10.1039/b802198h

    14. [14]

      (a) Weis, P.; Wu, S. Macromol. Rapid Commun. 2018, 39, 1700220.
      (b) Weis, P.; Tian, W.; Wu, S. Chem.-Eur. J. 2018, 24, 6494.

    15. [15]

      (a) Wu, S.; Wang, L.; Kroeger A.; Wu, Y.; Zhang, Q.; Bubeck, C. Soft Mater. 2011, 7, 11535.
      (b) Li, Y.; Deng, Y.; Tong, X.; Wang, X. Macromolecules 2006, 39, 1108.

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    8. [8]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(6)
  • Abstract views(1588)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return