Citation: Kong Yaolei, Xu Wenxiu, Ye Feixia, Weng Jianquan. Recent Advances in Visible-Light-Induced Cross Dehydrogenation Coupling Reaction under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3065-3083. doi: 10.6023/cjoc201905016 shu

Recent Advances in Visible-Light-Induced Cross Dehydrogenation Coupling Reaction under Transition Metal-Free Conditions

  • Corresponding author: Weng Jianquan, jqweng@zjut.edu.cn
  • Received Date: 9 May 2019
    Revised Date: 5 June 2019
    Available Online: 9 November 2019

    Fund Project: Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17C140003)the Natural Science Foundation of Zhejiang Province LY17C140003

Figures(20)

  • The cross dehydrogenation coupling reaction realizes direct coupling of two different X-H bonds to form a new chemical bond, thus featuring excellent step and atom economy. The traditional cross dehydrogenation coupling reaction was usually catalyzed by transition metal, which had the problems of expensive catalyst and serious pollution. Visible light-induced electron transfer is also an effective way to realize direct functionalization of X-H bonds. Visible-light-induced cross dehydrogenation coupling reaction under transition metal-free conditions is widely concerned due to the advantages of cleanliness, safety as well as high step and atom economy. Classified by the type of bonding, the research progress of these reactions is reviewed, and their future outlook is also discussed.
  • 加载中
    1. [1]

      Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.  doi: 10.1002/anie.201304268

    2. [2]

      Ji, D.-R.; Yang, H.; Zhao, X.-J.; Yang, H.; Liu, Y.-Z.; Liao, D.-H.; Feng, C.; Zhang, C.-G. Chin. Chem. Lett. 2014, 25, 348.  doi: 10.1016/j.cclet.2013.11.004

    3. [3]

      Batra, A.; Singh, P.; Singh, K. N. Eur. J.Org. Chem. 2016, 2016, 4927.  doi: 10.1002/ejoc.201600401

    4. [4]

      Batra, A.; Singh, P.; Singh, K. N. Eur. J.Org. Chem. 2017, 2017, 3739.  doi: 10.1002/ejoc.201700341

    5. [5]

      Hosseinian, A.; Ahmadi, S.; Nasab, F. A. H.; Mohammadi, R.; Vessally, E. Top. Curr. Chem. 2018, 376, 39.  doi: 10.1007/s41061-018-0217-0

    6. [6]

      Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.  doi: 10.1021/cr500431s

    7. [7]

      Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.  doi: 10.1021/acs.chemrev.6b00620

    8. [8]

      Tang, S.; Zeng, L.; Lei, A. J. Am. Chem. Soc. 2018, 140, 13128.  doi: 10.1021/jacs.8b07327

    9. [9]

      Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.  doi: 10.1021/ja211697s

    10. [10]

      Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 2082.  doi: 10.1002/anie.201208851

    11. [11]

      Lv, L.; Li, Z. Top. Curr. Chem. 2016, 374, 1.

    12. [12]

      Eisenhofer, A.; Hioe, J.; Gschwind, R. M.; König, B. Eur. J.Org. Chem. 2017, 2017, 2194.  doi: 10.1002/ejoc.201700211

    13. [13]

      Dong, J.; Xia, Q.; Lv, X.; Yang, C.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2018, 20, 5661.  doi: 10.1021/acs.orglett.8b02389

    14. [14]

      Hu, X.; Zhang, G.; Bu, F.; Luo, X.; Yi, K.; Zhang, H.; Lei, A. Chem. Sci. 2018, 9, 1521.  doi: 10.1039/C7SC04634K

    15. [15]

      Samanta, S.; Hajra, A. J. Org. Chem. 2019, 84, 4363.  doi: 10.1021/acs.joc.9b00366

    16. [16]

      Antonchick, A.; Murarka, S. Synthesis 2018, 50, 2150.  doi: 10.1055/s-0037-1609715

    17. [17]

      Faisca Phillips, A. M.; Pombeiro, A. J. L. ChemCatChem 2018, 10, 3354.  doi: 10.1002/cctc.201800582

    18. [18]

      Prendergast, A. M.; McGlacken, G. P. Eur. J. Org. Chem. 2018, 2018, 6068.  doi: 10.1002/ejoc.201800299

    19. [19]

      Narayan, R.; Matcha, K.; Antonchick, A. P. Chemistry 2015, 21, 14678.  doi: 10.1002/chem.201502005

    20. [20]

      Wang, B.; Wong, H. N. C. Bull. Chem. Soc. Jpn. 2018, 91, 710.  doi: 10.1246/bcsj.20170393

    21. [21]

      Parvatkar, P. T.; Manetsch, R.; Banik, B. K. Chem.-Asian J. 2019, 14, 6.  doi: 10.1002/asia.201801237

    22. [22]

      Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.  doi: 10.1039/B913880N

    23. [23]

      Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.  doi: 10.1039/c2cs35203f

    24. [24]

      Tucker, J. W.; Stephenson, C. R. J. Org. Chem. 2012, 77, 1617.  doi: 10.1021/jo202538x

    25. [25]

      Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.  doi: 10.1002/anie.201200223

    26. [26]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.  doi: 10.1021/cr300503r

    27. [27]

      Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.  doi: 10.1021/acs.chemrev.6b00057

    28. [28]

      Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.  doi: 10.1016/j.tetlet.2016.07.032

    29. [29]

      Dai, X.-Q.; Zhu, Y.-B.; Xu, X.-L.; Weng, J.-Q. Chin. J. Org. Chem. 2017, 37, 577 (in Chinese).
       

    30. [30]

      Xu, W.-X.; Dai, X.-Q.; Xu, H.-J.; Weng, J.-Q. Chin. J. Org. Chem. 2018, 38, 2807 (in Chinese).
       

    31. [31]

      Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.  doi: 10.1021/acs.accounts.8b00267

    32. [32]

      Zhang, H.; Lei, A. Asian J. Org. Chem. 2018, 7, 1164.  doi: 10.1002/ajoc.201800214

    33. [33]

      Lei, A.; Zhang, H. Synthesis 2018, 51, 83.

    34. [34]

      Pan, Y.; Kee, C.-W.; Chen, L.; Tan, C.-H. Green Chem. 2011, 13, 2682.  doi: 10.1039/c1gc15489c

    35. [35]

      Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852.  doi: 10.1021/ol201376v

    36. [36]

      Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem.-Eur. J. 2012, 18, 620.  doi: 10.1002/chem.201102299

    37. [37]

      M hlmann, L.; Baar, M.; Rie , J.; Antonietti, M.; Wang, X.; Blechert, S. Adv. Synth. Catal. 2012, 354, 1909.  doi: 10.1002/adsc.201100894

    38. [38]

      Rueping, M.; Vila, C.; Bootwicha, T. ACS Catal. 2013, 3, 1676.  doi: 10.1021/cs400350j

    39. [39]

      Zhao, Y.; Zhang, C.; Chin, K. F.; Pytela, O.; Wei, G.; Liu, H.-J.; Bureš, F.; Jiang, Z.-Y. RSC Adv. 2014, 4, 30062.  doi: 10.1039/C4RA05525J

    40. [40]

      Itoh, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Nakayama, T.; Uno, B. Synlett 2014, 25, 1453.  doi: 10.1055/s-0033-1341257

    41. [41]

      Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51, 11256.  doi: 10.1039/C5CC03421C

    42. [42]

      Gandy, M. N.; Raston, C. L.; Stubbs, K. A. Chem. Commun. 2015, 51, 11041.  doi: 10.1039/C5CC02153G

    43. [43]

      Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280.  doi: 10.1039/C4CC10270C

    44. [44]

      Shirley, L. D.; Ceban, V.; Meazza, M.; Rios, R. Chem. Sci. 2016, 1, 13.

    45. [45]

      Li, X.; Li, Y.; Huang, Y.; Zhang, T.; Liu, Y.; Yang, B.; He, C.; Zhou, X.; Zhang, J. Green Chem. 2017, 19, 2925.  doi: 10.1039/C6GC03558B

    46. [46]

      Zhang, T.; Liang, W.; Huang, Y.; Li, X.; Liu, Y.; Yang, B.; He, C.; Zhou, X.; Zhang, J. Chem. Commun. 2017, 53, 12536.  doi: 10.1039/C7CC06997A

    47. [47]

      Xiao, L.; Huang, Y.; Luo, Y.; Yang, B.; Liu, Y.; Zhou, X.; Zhang, J. ACS Sustainable Chem. Eng. 2018, 6, 14759.  doi: 10.1021/acssuschemeng.8b03308

    48. [48]

      Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. ChemSusChem 2017, 10, 664.  doi: 10.1002/cssc.201601702

    49. [49]

      Liu, W.; Wu, S.; Su, Q.; Guo, B.; Ju, P.; Li, G.; Wu, Q. J. Mater. Sci. 2018, 54, 1205.

    50. [50]

      Chen, K.; Cheng, Y.; Chang, Y.; Li, E.; Xu, Q.-L.; Zhang, C.; Wen, X.; Sun, H. Tetrahedron 2018, 74, 483.  doi: 10.1016/j.tet.2017.12.019

    51. [51]

      Yang, J.; Xie, D.; Zhou, H.; Chen, S.; Duan, J.; Huo, C.; Li, Z. Adv. Synth. Catal. 2018, 360, 3471.  doi: 10.1002/adsc.201800467

    52. [52]

      Xiao, T.; Li, L.; Lin, G.; Mao, Z. W.; Zhou, L. Org. Lett. 2014, 16, 4232.  doi: 10.1021/ol501933h

    53. [53]

      Devari, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.  doi: 10.1039/C5CC08817H

    54. [54]

      Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. ACS Catal. 2016, 6, 3708.  doi: 10.1021/acscatal.6b00846

    55. [55]

      Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.  doi: 10.1021/acs.orglett.7b00428

    56. [56]

      Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.  doi: 10.1021/acssuschemeng.8b04652

    57. [57]

      Kibriya, G.; Bagdi, A. K.; Hajra, A. J. Org. Chem. 2018, 83, 10619.  doi: 10.1021/acs.joc.8b01433

    58. [58]

      Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2019, 84, 4543.  doi: 10.1021/acs.joc.9b00318

    59. [59]

      Sun, B.; Deng, J.; Li, D.; Jin, C.; Su, W. Tetrahedron Lett. 2018, 59, 4364.  doi: 10.1016/j.tetlet.2018.10.067

    60. [60]

      Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Org. Chem. Front. 2018, 5, 2120.  doi: 10.1039/C8QO00341F

    61. [61]

      Weng, J.-Q.; Xu, W.-X.; Dai, X.-Q.; Zhang, J.-H.; Liu, X.-H. Tetrahedron Lett. 2019, 60, 390.  doi: 10.1016/j.tetlet.2018.12.064

    62. [62]

      Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111.  doi: 10.1039/C5SC03640B

    63. [63]

      Niu, L.; Liu, J.; Liang, X.-A.; Wang, S.; Lei, A. Nat. Commun. 2019, 10, 467.  doi: 10.1038/s41467-019-08413-9

    64. [64]

      Liang, X. A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441.  doi: 10.1021/acs.orglett.9b00744

    65. [65]

      Huang, C.-Y.; Li, J.; Liu, W.; Li, C.-J. Chem. Sci. 2019, 10, 5018.  doi: 10.1039/C8SC05631E

    66. [66]

      Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. Chem. Commun. 2018, 54, 5744.  doi: 10.1039/C8CC02342E

    67. [67]

      Xuan, J.; Feng, Z.-J.; Duan, S.-W.; Xiao, W.-J. RSC Adv. 2012, 2, 4065.  doi: 10.1039/c2ra20403g

    68. [68]

      Teo, Y. C.; Pan, Y.; Tan, C. H. ChemCatChem 2013, 5, 235.  doi: 10.1002/cctc.201200435

    69. [69]

      Leow, D. Org. Lett. 2014, 16, 5812.  doi: 10.1021/ol5029354

    70. [70]

      Pandey, G.; Laha, R. Angew. Chem., Int. Ed 2015, 54, 14875.  doi: 10.1002/anie.201506990

    71. [71]

      Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science 2015, 349, 1326.  doi: 10.1126/science.aac9895

    72. [72]

      Margrey, K. A.; Levens, A.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2017, 56, 15644.  doi: 10.1002/anie.201709523

    73. [73]

      Meyer, A. U.; Berger, A. L.; Konig, B. Chem. Commun. 2016, 52, 10918.  doi: 10.1039/C6CC06111G

    74. [74]

      Sakakibara, Y.; Ito, E.; Kawakami, T.; Yamada, S.; Murakami, K.; Itami, K. Chem. Lett. 2017, 46, 1014.  doi: 10.1246/cl.170321

    75. [75]

      Song, C.; Yi, H.; Dou, B.; Li, Y.; Singh, A. K.; Lei, A. Chem. Commun. 2017, 53, 3689.  doi: 10.1039/C7CC01339F

    76. [76]

      Das, S.; Natarajan, P.; König, B. Chem.-Eur. J. 2017, 23, 18161.  doi: 10.1002/chem.201705442

    77. [77]

      Martinez, C.; Bosnidou, A. E.; Allmendinger, S.; Muniz, K. Chemistry 2016, 22, 9929.  doi: 10.1002/chem.201602138

    78. [78]

      Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326.  doi: 10.1021/acs.orglett.6b01371

    79. [79]

      Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Li, B.; Gou, B.-Q.; Xia, W.-J. ACS Catal. 2017, 7, 2446.  doi: 10.1021/acscatal.7b00192

    80. [80]

      Yamaguchi, T.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1282.  doi: 10.1021/acs.orglett.7b00026

    81. [81]

      Zhang, L.; Yi, H.; Wang, J.; Lei, A. J. Org. Chem. 2017, 82, 10704.  doi: 10.1021/acs.joc.7b01841

    82. [82]

      Samanta, S.; Ravi, C.; Rao, S. N.; Joshi, A.; Adimurthy, S. Org. Biomol. Chem. 2017, 15, 9590.  doi: 10.1039/C7OB02504A

    83. [83]

      Wei, W.; Wang, L.-L.; Bao, P.-L.; Shao, Y.; Yue, H.-Y.; Yang, D.-S.; Yang, X.-B.; Zhao, X.-H.; Wang, H. Org. Lett. 2018, 20, 7125.  doi: 10.1021/acs.orglett.8b03079

    84. [84]

      Xin, J.-R.; He, Y.-H.; Guan, Z. Org. Chem. Front. 2018, 5, 1684.  doi: 10.1039/C8QO00161H

    85. [85]

      Pandey, G.; Pal, S.; Laha, R. Angew. Chem., Int. Ed. 2013, 52, 5146.  doi: 10.1002/anie.201210333

    86. [86]

      Wang, L.; Ma, Z.-G.; Wei, X.-J.; Meng, Q.-Y.; Yang, D.-T.; Du, S.-F.; Chen, Z.-F.; Wu, L.-Z.; Liu, Q. Green Chem. 2014, 16, 3752.  doi: 10.1039/C4GC00337C

    87. [87]

      Ramirez, N. P.; Bosque, I.; Gonzalez-Gomez, J. C. Org. Lett. 2015, 17, 4550.  doi: 10.1021/acs.orglett.5b02269

    88. [88]

      Yi, H.; Niu, L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 1120.  doi: 10.1002/anie.201609274

    89. [89]

      Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.  doi: 10.1021/jacs.5b12081

    90. [90]

    91. [91]

      Kibriya, G.; Samanta, S.; Jana, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2017, 82, 13722.  doi: 10.1021/acs.joc.7b02582

    92. [92]

      Luo, K.; Chen, Y. Z.; Yang, W. C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.  doi: 10.1021/acs.orglett.5b03497

    93. [93]

      Peng, P.; Peng, L.; Wang, G.; Wang, F.; Luo, Y.; Lei, A. Org. Chem. Front. 2016, 3, 749.  doi: 10.1039/C6QO00049E

    94. [94]

      Li, Q.-R.; Zhao, X.-L.; Li, Y.-B.; Huang, M.-M.; Kim, J. K.; Wu, Y.-J. Org. Biomol. Chem. 2017, 15, 9775.  doi: 10.1039/C7OB02478A

    95. [95]

      Singsardar, M.; Dey, A.; Sarkar, R.; Hajra, A. J. Org. Chem. 2018, 83, 12694.  doi: 10.1021/acs.joc.8b02019

    96. [96]

      Rusch, F.; Unkel, L. N.; Alpers, D.; Hoffmann, F.; Brasholz, M. Chem.-Eur. J. 2015, 21, 8336.  doi: 10.1002/chem.201500612

    97. [97]

      Hloušková, Z.; Tydlitát, J.; Kong, M.; Pytela, O.; Mikysek, T.; Klikar, M.; Almonasy, N.; Dvořák, M.; Jiang, Z.-Y.; Růžička, A.; Bureš, F. ChemistrySelect 2018, 3, 4262.  doi: 10.1002/slct.201800719

    98. [98]

      He, Y.; Yan, B.; Tao, H.; Zhang, Y.; Li, Y. Org. Biomol. Chem. 2018, 16, 3816.  doi: 10.1039/C8OB00240A

    99. [99]

      Zhou, H.; Yang, X.; Li, S.; Zhu, Y.; Li, Y.; Zhang, Y. Org. Biomol. Chem. 2018, 16, 6728.  doi: 10.1039/C8OB01844H

    100. [100]

      Roslan, I. I.; Ng, K.-H.; Gondal, M. A.; Basheer, C.; Dastageer, M. A.; Jaenicke, S.; Chuah, G.-K. Adv. Synth. Catal. 2018, 360, 1584.  doi: 10.1002/adsc.201701565

    101. [101]

      Talla, A.; Driessen, B.; Straathof, N. J. W.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; Noël, T. Adv. Synth. Catal. 2015, 357, 2180.  doi: 10.1002/adsc.201401010

    102. [102]

      Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Tetrahedron 2016, 72, 788.

    103. [103]

      Sun, J.-G.; Yang, H.; Li, P.; Zhang, B. Org. Lett. 2016, 18, 5114.  doi: 10.1021/acs.orglett.6b02563

    104. [104]

      Meazza, M.; Kowalczuk, A.; Shirley, L.; Yang, J. W.; Guo, H.; Rios, R. Adv. Synth. Catal. 2016, 358, 719.  doi: 10.1002/adsc.201501068

    105. [105]

      Zhang, H.; Zhan, Z.; Lin, Y.; Shi, Y.-S.; Li, G.-B.; Wang, Q.-T.; Deng, Y.; Hai, L.; Wu, Y. Org. Chem. Front. 2018, 5, 1416.  doi: 10.1039/C7QO01082F

    106. [106]

      Yang, C.; Wang, J.; Li, J.-H.; Ma, W.-C.; An, K.; He, W.; Jiang, C. Adv. Synth. Catal. 2018, 360, 3049.  doi: 10.1002/adsc.201800417

    107. [107]

      Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A. Nat. Commun. 2017, 8, 14226.  doi: 10.1038/ncomms14226

    108. [108]

      Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.  doi: 10.1002/anie.201700572

    109. [109]

      Chen, H.; Yi, H.; Tang, Z.; Bian, C.; Zhang, H.; Lei, A. Adv. Synth. Catal. 2018, 360, 3220.  doi: 10.1002/adsc.201800531

  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    16. [16]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    17. [17]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

Metrics
  • PDF Downloads(56)
  • Abstract views(2342)
  • HTML views(443)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return