Citation: He Yuqian, Zhao Bing, Kan Wei, Wang Liyan, Song Bo, Yin Guangming, Bi Ye, Chen Shuwen. An Excited-State Intramolecular Proton Transfer (ESIPT) Plus Ag-gregation Induced Emission (AIE) Phenanthro[9, 10-d]imidazole-Based Fluorescence Probe for Detection of Fe3+ in Living Cells[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3250-3257. doi: 10.6023/cjoc201904078 shu

An Excited-State Intramolecular Proton Transfer (ESIPT) Plus Ag-gregation Induced Emission (AIE) Phenanthro[9, 10-d]imidazole-Based Fluorescence Probe for Detection of Fe3+ in Living Cells

  • Corresponding author: Zhao Bing, zhao_submit@aliyun.com Kan Wei, kan_submit@aliyun.com Chen Shuwen, anshancsw@126.com
  • Received Date: 30 April 2019
    Revised Date: 30 May 2019
    Available Online: 19 November 2019

    Fund Project: the National Natural Science Foundation of China 21506106the Fundamental Research Funds in Heilongjiang Provincial Universities YSTSXK201859Project supported by the National Natural Science Foundation of China (No. 21506106), the Natural Science Foundation of Heilongjiang Province (No. LC2017004), the Fundamental Research Funds in Heilongjiang Provincial Universities (Nos. 135209209, YSTSXK201853, YSTSXK201859) and the Qiqihar University Graduate Innovation Fund Grants (No. YJSCX2018-ZD18)the Fundamental Research Funds in Heilongjiang Provincial Universities YSTSXK201853the Fundamental Research Funds in Heilongjiang Provincial Universities 135209209the Qiqihar University Graduate Innovation Fund Grants YJSCX2018-ZD18the Natural Science Foundation of Heilongjiang Province LC2017004

Figures(10)

  • Selective detection of Fe3+ has considerable importance due to its active involvement in various biological processes. Based on the mechanism of excited-state intramolecular proton transfer (ESIPT) plus aggregation induced emission (AIE), a fluorescence probe of phenanthro[9, 10-d]imidazole modified by the phenolic hydroxyl (PIP-o-OH) had been designed, synthesized and applied in the detection of Fe3+. The structure of PIP-o-OH was characterized by 1H NMR, 13C NMR, IR, HRMS and X-ray single diffraction. Furthermore, a clear intramolecular hydrogen bond was observed between hydroxyl O-H and imidazole N atom in X-ray single structure, which improved the impossibility of ESIPT activity. ESIPT and AIE activities of PIP-o-OH were adequately determined by absorption, emission spectra and scanning electron microscope (SEM). The aggregated PIP-o-OH in MeOH/H2O (V:V=1:9, Hepes 10 μmol/L, pH=7.4) exhibited a good sensitivity towards Fe3+ with "turn-off" fluorescence response just after 20 s. The limit of detection (LOD) was calculated as low as 0.49 μmol/L. So it could be utilized to detect Fe3+ in biology and environmental samples. In addition, the calculation of the density functional theory (DFT) confirmed the formation of PIP-o-OH-Fe3+ complex. Also, PIP-o-OH was successfully applied to monitor Fe3+ in HeLa cells by the fluorescence change and quantificationally detect Fe3+ in water samples.
  • 加载中
    1. [1]

      Liu, R. J.; Zeng, J. Chin. J. Org. Chem. 2017, 37, 3274 (in Chinese).
       

    2. [2]

      Yang, M. P.; Su, N.; Li, Y. X.; Wang, L.; Ma, L. F.; Zhang, Y.; Li, J.; Yang, B. Q.; Kang, L. L. Chin. J. Org. Chem. 2018, 38, 636 (in Chinese).
       

    3. [3]

      Carter, K. P.; Young, A. M.; Palmer, A. E. Chem. Rev. 2014, 114, 4564.  doi: 10.1021/cr400546e

    4. [4]

      Chung, P. K.; Liu, S. R.; Wang, H. F.; Wu, S. P. J. Fluoresc. 2013, 23, 1139.  doi: 10.1007/s10895-013-1242-6

    5. [5]

      Lee, M. H.; Kim, J. S.; Sessler, J. L. Chem. Soc. Rev. 2015, 44, 4185.  doi: 10.1039/C4CS00280F

    6. [6]

      Wang, Q. Q.; Zhou, L. Y.; Qiu, L. P.; Lu, D. Q.; Wu, Y. X.; Zhang, X. B. Analyst 2015, 140, 5563.  doi: 10.1039/C5AN00683J

    7. [7]

      Barman, S.; Mukhopadhyay, S. K.; Gangopadhyay, M.; Biswas, S.; Dey, S.; Singh, N. D. P. J. Mater. Chem. B 2015, 3, 3490.  doi: 10.1039/C4TB02081B

    8. [8]

      Maity, D.; Kumar, V.; Govindaraju, T. Org. Lett. 2012, 14, 6008.  doi: 10.1021/ol302904c

    9. [9]

      Yang, C. Y.; Chen, Y.; Wu, K.; Wei, T.; Wang, J. L.; Zhang, S. S.; Han, Y. F. Anal. Methods 2015, 7, 3327.  doi: 10.1039/C5AY00224A

    10. [10]

      Wang, H.; Shi, D. L.; Li, J.; Tang, H. Y.; Guo, Y. Sens. Actuators, B 2018, 256, 600.  doi: 10.1016/j.snb.2017.10.124

    11. [11]

      Shen, Y. M.; Zhang, X. Y.; Zhang, C. X.; Zhang, Y. Y.; Jin J. L.; Li, H. T. Spectrochim. Acta, Part A 2018, 191, 427.  doi: 10.1016/j.saa.2017.09.069

    12. [12]

      Hu, J.; Cheng, K.; Wu, Q.; Ding, D. S.; Li, C. G.; Li, Z. Mater. Chem. Front. 2018, 2, 1201.  doi: 10.1039/C8QM00107C

    13. [13]

      Tian, M. G.; Sun, J.; Tang, Y. H.; Dong, B. L.; Lin, W. Y. Anal. Chem. 2018, 90, 998.  doi: 10.1021/acs.analchem.7b04252

    14. [14]

      Feng, L.; Liu, Z. M.; Hou, J.; Lv, X.; Ning, J.; Ge, G. B.; Cui, J. N.; Yang, L. Biosens. Bioelectron. 2015, 65, 9.  doi: 10.1016/j.bios.2014.10.002

    15. [15]

      Hu, Q.; Zeng, H. F.; Yu, C. M.; Wu, S. Z. Sens. Actuators, B 2015, 220, 72.

    16. [16]

      Feng, W. P.; Wang, Y. C.; Chen, S. Z.; Wang, C.; Wang, S. X.; Li, S. H.; Li, H. Y.; Zhou, G. Q.; Zhang, J. C. Dyes Pigm. 2016, 131, 145.  doi: 10.1016/j.dyepig.2016.03.019

    17. [17]

      Shvadchak, V. V.; Klymchenko, A. S.; De Rocquigny, H.; Mely, Y. Nucleic Acids Res. 2009, 37, e25.  doi: 10.1093/nar/gkn1083

    18. [18]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Chen, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan. X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.

    19. [19]

      Kwok, R. T. K.; Leung, C. W. T.; Tang, B. Z. Chem. Soc. Rev. 2015, 44, 4228.  doi: 10.1039/C4CS00325J

    20. [20]

      Xia, Q.; Chen, Z. K.; Zhang, Z. D.; Liu, R.Y. Chin. J. Org. Chem. 2018, 38, 2700 (in Chinese).
       

    21. [21]

      Zhan, G. J.; Han, K. L. Acc. Chem. Res. 2012, 3, 404.

    22. [22]

      Zhan, N.; Lam, J. W. Y.; Sung, H. H. Y.; Su, H. M.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Chem.-Eur. J. 2014, 1, 133.

    23. [23]

      Cui, G. L.; Lan, Z. G.; Thiel, W. J. Am. Chem. Soc. 2012, 3, 1662.

    24. [24]

      Xiao, H. D.; Chen, K.; Cui, D. D.; Jiang, N. N.; Yin, G.; Wang, J.; Wang, R. Y. New J. Chem. 2014, 38, 2386.  doi: 10.1039/C3NJ01557B

    25. [25]

      Hu, R. R.; Leung, N. L. C.; Tang, B. Z. Chem. Soc. Rev. 2014, 43, 4494.  doi: 10.1039/C4CS00044G

    26. [26]

      Hu, R. R.; MaldonadoJose, J. L.; Rodriguez, M.; Deng, C. M.; Lam, J. W. Y.; Yuen, M. M. F.; Ramos-Ortiz, G.; Tang, B. Z. J. Mater. Chem. 2012, 22, 232.  doi: 10.1039/C1JM13556B

    27. [27]

      Chen, Y.; Xu, W. C.; Kou, J. F.; Yu, B. L.; Wei, X. H.; Chao, H.; Ji, L. N. Inorg. Chem. Commun. 2010, 10, 1140.

    28. [28]

      Alam, P.; Das, P.; Climent, C.; Karanam, M.; Casanova, D.; Choudhury, A. P.; Alemany, P.; Jana, N. R.; Laskar, I. R. J. Mater. Chem. C 2014, 2, 5615.  doi: 10.1039/C4TC00466C

    29. [29]

      Chen, Q.; Jia, C. M.; Zhang, Y. F.; Du, W.; Wang, Y. L.; Huang, Y.; Yang, Q. Y.; Zhang, Q. J. Mater. Chem. B 2017, 5, 7736.  doi: 10.1039/C7TB02076G

    30. [30]

      Liu, Y.; Nie, J.; Niu, J.; Wang, W. S.; Lin, W. Y. J. Mater. Chem. B 2018, 6, 1973.

    31. [31]

      Liu, H. W.; Li, K.; Hu, X. X.; Zhu, L. M.; Rong, Q. M.; Liu, Y. C.; Zhang, X. B.; Hasserodt, J.; Qu, F. L.; Tan, W. H. Angew. Chem., Int. Ed. 2017, 56, 11788.  doi: 10.1002/anie.201705747

    32. [32]

      Datta, B. K.; Thiyagajan, D.; Samanta, S.; Ramesh, A.; Das, G. Org. Biomol. Chem. 2014, 12, 4975.  doi: 10.1039/C4OB00653D

    33. [33]

      Job, P. Ann. Chim. 1928, 9, 113.

  • 加载中
    1. [1]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    2. [2]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    13. [13]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(15)
  • Abstract views(1390)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return