Citation: Dong Daoqing, Chen Wenjing, Chen Demao, Li Lixia, Li Guanghui, Wang Zuli, Deng Qi, Long Shu. Direct Synthesis of Sulfonated or Sulfenylated Pyrazolones Mediated by KIO3 and Their Anti-microbial Activity[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3190-3198. doi: 10.6023/cjoc201904070 shu

Direct Synthesis of Sulfonated or Sulfenylated Pyrazolones Mediated by KIO3 and Their Anti-microbial Activity

  • Corresponding author: Wang Zuli, wangzulichem@163.com
  • These authors contributed equally to this article
  • Received Date: 29 April 2019
    Revised Date: 5 June 2019
    Available Online: 2 November 2019

    Fund Project: the National Natural Science Foundation of China 21772107the Research Fund of Qingdao Agricultural University's Highlevel Person 631303Project supported by the National Natural Science Foundation of China (Nos. 21402103, 21772107), the China Postdoctoral Science Foundation (No. 150030), and the Research Fund of Qingdao Agricultural University's Highlevel Person (No. 631303)the National Natural Science Foundation of China 21402103the China Postdoctoral Science Foundation 150030

Figures(2)

  • A facile and efficient method for the synthesis of sulfonated or sulfenylated pyrazolones catalyzed by KIO3 was established. A variety of desired products were obtained in moderate to high yields. This methodology could be conducted under mild reaction conditions without requiring any metal. Control experiments showed that the mechanism of this reaction was different from previous KIO3-catalyzed reactions. Some of these desired products showed high inhibitory activity against V. mali and B. cinerea.
  • 加载中
    1. [1]

      (a) Elguero, J. Comprehensive Heterocyclic Chemistry, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, UK, 1996, p. 167.
      (b) Liu, X. H.; Cui, P.; Song, B. A.; Bhadury, P. S.; Zhu, H. L.; Wang, S. F. Bioorg. Med. Chem. 2008, 16, 4075.
      (c) Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Franzblau, S. G.; Petukhov, P. A. J. Med. Chem. 2008, 51, 1999.
      (d) Magedov, I. V.; Manpadi, M.; Slambrouck, V. S.; Steelant, W. F. A.; Rozhkova, E.; Przheval'skii, N. M.; Rogelj, S.; Kornienko, A. J. Med. Chem. 2007, 50, 5183.
      (e) Vicentini, C. B.; Romagnoli, C.; Reotti, E.; Mares, D. J. Agric. Food Chem. 2007, 55, 10331.
      (f) Vicentini, C. B.; Guccione, S.; Giurato, L.; Ciaccio, R.; Mares, D.; Forlani, G. J. Agric. Food Chem. 2005, 53, 3848.
      (g) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
      (h) Liang, Q.; Zhang, Y.; Zeng, M.; Guan, L.; Xiao, Y.; Xiao, F. Toxicol. Res. 2018, 7, 521.
      (i) Jiang, H.; Tang, X.; Xu, Z.; Wang, H.; Han, K.; Yang, X.; Zhou, Y.; Feng, Y.; Yu, X.; Gui, Q. Org. Biomol. Chem. 2019, 17, 2715.
      (j) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.

    2. [2]

      Kawakubo, K.; Shindo, M.; Konotsune, T. Plant Physiol. 1979, 64, 774.  doi: 10.1104/pp.64.5.774

    3. [3]

      Watanabe, K.; Morinaka, Y.; Iseki, K.; Watanabe, T.; Yuki, S.; Nishi, H. Redox Rep. 2003, 8, 151.  doi: 10.1179/135100003225001520

    4. [4]

      (a) Wolf, W. M. J. Mol. Struct. 1999, 474, 113.
      (b) Petrov, K. G.; Zhang, Y.; Carter, M.; Cockerill, G. S.; Dickerson, S.; Gauthier, C. A.; Guo, Y.; Mook, R. A.; Rusnak, D. W.; Walker, A. L.; Wood, E. R.; Lackey, K. E. Bioorg. Med. Chem. Lett. 2006, 16, 4686.
      (c) Ettari, R.; Nizi, E.; Francesco, M. E. D.; Dude, M. A.; Pradel, G.; Vicik, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappala, M. J. Med. Chem. 2008, 51, 988.

    5. [5]

      (a) Kumar, R.; Namboothiri, I. N. N. Org. Lett. 2011, 13, 4016.
      (b) Kumar, R.; Verma, D.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2012, 14, 4070.
      (c) Zhu, Y.; Lu, W. T.; Sun, H. C.; Zhan, Z. P. Org. Lett. 2013, 15, 4146.
      (d) Jeon, D. J.; Lee, J. N.; Lee, K. C.; Kim, H. R.; Zong, K.; Ryu, E. K. Bull. Korean Chem. Soc. 1998, 19, 1153.
      (e) Xu, X. H.; Wang, X.; Liu, G. K.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 2544.

    6. [6]

      Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org. Chem. Front. 2017, 4, 26.  doi: 10.1039/C6QO00403B

    7. [7]

      (a) Shermolovich, Y. G.; Emets, S. V. Chem. Heterocycl. Compd. 2000, 36, 152.
      (b) Li, L.; Hao, S.; Dong, D.; Wang, Z. Tetrahedron. Lett. 2018, 59, 1517;

    8. [8]

      Zhao, X.; Zhang, L.; Li, T.; Liu, G.; Wang, H.; Lu, K. Chem. Commun. 2014, 50, 13121.  doi: 10.1039/C4CC05237D

    9. [9]

      Wang, D.; Guo, S.; Zhang, R.; Lin, S.; Yan, Z. RSC Adv. 2016, 6, 54377.  doi: 10.1039/C6RA02302A

    10. [10]

      Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, T.; Sun, J.; Wei, W.; Wang, H. RSC Adv. 2016, 6, 51830.  doi: 10.1039/C6RA09739A

    11. [11]

      Yang, D.; Sun, P.; Wei, W.; Meng, L.; He, L.; Fang, B.; Jiang, W.; Wang, H. Org. Chem. Front. 2016, 3, 1457.  doi: 10.1039/C6QO00407E

    12. [12]

      Hu, F.; Gao, W.; Chang, H.; Li, X.; Wei, W. Chin. J. Org. Chem. 2015, 35, 1848.  doi: 10.6023/cjoc201504039

    13. [13]

      (a) Mphahlele, M. J. Molecules 2009, 14, 4814.
      (b) Hummel, S.; Kirsch, S. F. Beilstein J. Org. Chem. 2011, 7, 847.

    14. [14]

      (a) Zhao, J.; Gao, W.; Chang, H.; Li, X.; Liu, Q.; Wei, W. Chin. J. Org. Chem. 2014, 34, 1941.
      (b) Wu, C.; Lu, L. H.; Peng, A. Z.; Jia, G. K.; Peng, C.; Cao, Z.; Tang, Z.; He, W. M.; Xu, X. Green Chem. 2018, 20, 3683.
      (c) Bao, W. H.; He, M.; Wang, J.; Peng, T. X.; Sung, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. M. J. Org. Chem. 2019, 84, 6065.
      (d) Lu, L.-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 1237.

    15. [15]

      (a) Liu, K.; Song, C.; Lei, A. Org. Biomol. Chem. 2018, 16, 2375.
      (b) Nguyen, T. B. Asian J. Org. Chem. 2017, 6, 477.
      (c) Lauriers, A. J.; Legault. C. Y. Asian J. Org. Chem. 2016, 5, 1078.
      (d) Yoshimura, A.; Yusubov, M. S.; Zhdankin. V. V. Org. Biomol. Chem. 2016, 21, 4771.
      (e) Aggarwal, T.; Kumar, S.; Verma, A. K. Org. Biomol. Chem. 2016, 14, 7639.
      (f) Zhao, J.; Gao, W.; Chang, H.; Li, X.; Liu, Q.; Wei, W. Chin. J. Org. Chem. 2014, 34, 1941.
      (g) Finkbeiner, P.; Nachtsheim. B. J. Synthesis 2013, 45, 979.
      (h) Liu M.; Huang H.; Chen Y. Chin. J. Chem. 2018, 36, 1209.
      (i) Wan, J.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 4401.
      (j) Hou J.; Zhang X.; Yu W.; Chang J. Chin. J. Org. Chem. 2018, 38, 3236.
      (k) Lu, L. H.; Zhou, S. J.; He, W. B.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W. M. Org. Biomol. Chem. 2018, 16, 9064.
      (l) Bao, W. H.; Wu, C.; Wang, J. T.; Xia, W.; Chen, P.; Tang, Z.; Xu, X., He, W. M. Org. Biomol. Chem. 2018, 16, 8403.
      (m) Lu, L. H.; Zhou, S. J.; Sun, M.; Chen, J. L.; Xia, W.; Yu, X.; Xu, X.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 1574.
      (n) Tang, Y. Ran, S.; Wang, P.; Chen, P. Chin. J. Org. Chem. 2019, 39, 1116 (in Chinese).
      (唐裕才, 冉书童, 王萍, 陈飘, 有机化学, 2019, 39, 1116.)
      (o) Zhu, F.; Wang, Y.; He, M.; Yan, Z.; Lin, S. Chin. J. Org. Chem. 2019, 39, 1175 (in Chinese).
      (朱福元, 王彦梅, 何明闯, 严兆华, 林森, 有机化学, 2019, 39, 1175.)

    16. [16]

      (a) Hao, S.; Li, L.; Dong, D.; Wang, Z. Chin. J. Catal. 2017, 38, 1664.
      (b) Dong, D.; Hao, S.; Yang, D.; Li, L.; Wang, Z. Eur. J. Org. Chem. 2017, 6576.
      (c) Dong, D.; Zhang, H.; Wang, Z. RSC Adv. 2017, 7, 3780.
      (d) Zhang, H.; Dong, D.; Hao, S.; Wang, Z. RSC Adv. 2016, 6, 8465.
      (e) Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.
      (f) Hao, S.; Li, L.; Dong, D.; Wang, Z.; Yu, X. Tetrahedron Lett. 2018, 59, 4073.
      (g) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.
      (h) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.
      (i) Yan, S.; Dong, D.-Q.; Xie, C.; Wang, W.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 2560 (in Chinese).
      (颜世强, 董道青, 解春文, 王文笙, 王祖利, 有机化学, 2019, 39, 2560.)
      (j) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313..
      (k) Xie, L. Y.; Peng, S.; Liu, F.; Chen, G. R.; Xia, W.; Yu, X.; Li, W. F.; Cao, Z.; He, W. M. Org. Chem. Front. 2018, 5, 2604.
      (l) Xie, L. Y.; Peng, S.; Jiang, L. L.; Peng, X.; Xia, W.; Yu, X.; Wang, X. X.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 2, 167.
      (m) Xu, X. M.; Chen, D. M.; Wang, Z. L. Chin. Chem. Lett. 2019, Doi: org/10.1016/j.cclet.2019.05.048.
      (n)Dong,D.Q.;Hao,S.Zhang,H.;Wang,Z.L.Chin.Chem.Lett.2017,28,1597.

    17. [17]

      Qiao, L.; Wei, Y.; Hao, S. Chin. J. Org. Chem. 2018, 38, 509 (in Chinese).
       

    18. [18]

      Jin, H.; Geng, Y.; Yu, Z.; Tao, K.; Hou, T. Pestic. Biochem. Physiol. 2009, 93, 133.  doi: 10.1016/j.pestbp.2009.01.002

  • 加载中
    1. [1]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    2. [2]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    3. [3]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    4. [4]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    5. [5]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    6. [6]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    7. [7]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    8. [8]

      Yadong LiFeng-Huan DuJunjie LiJun XuZhifang YangShanshan LiChi ZhangYunfei Du . Preparation of benziodazole-triflate and its application as both 2-iodobenzamido- and triflate-transfer reagents. Chinese Chemical Letters, 2025, 36(6): 110338-. doi: 10.1016/j.cclet.2024.110338

    9. [9]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    12. [12]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    13. [13]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    14. [14]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    15. [15]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    16. [16]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    19. [19]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    20. [20]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

Metrics
  • PDF Downloads(11)
  • Abstract views(973)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return