Citation: Li Hengchao, Zhao Ling, Liu Yan, Zhang Xia, Li Wangbing, Jing Linhai, Huang Jin, Wang Wei. An Efficient Palladium Nanoparticles Catalytic System for Suzuki Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3207-3214. doi: 10.6023/cjoc201904069 shu

An Efficient Palladium Nanoparticles Catalytic System for Suzuki Coupling Reactions

  • Corresponding author: Huang Jin, huahuanhuangjin@163.com Wang Wei, wangwei1987@cwnu.edu.cn
  • Received Date: 27 April 2019
    Revised Date: 5 June 2019
    Available Online: 2 November 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21602144), the Sichuan Science and Technology Program (No. 2018JY0485) and the Fundamental Research Funds of China West Normal University (No. 17E049)the National Natural Science Foundation of China 21602144the Fundamental Research Funds of China West Normal University 17E049the Sichuan Science and Technology Program 2018JY0485

Figures(3)

  • A simple and highly efficient palladium nanoparticles catalytic system was applied in Suzuki coupling reaction. This system could catalyze a variety of aryl halide and arylboronic acid substrates with a wide range of functional groups. A high turnover number of 90000 was obtained with the catalyst loading as low as 0.001 mol%. This catalyst system exhibited good stability and longevity.
  • 加载中
    1. [1]

      Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.  doi: 10.1021/cr00039a007

    2. [2]

      Suzuki, A. Chem. Commun. 2005, 4759.
       

    3. [3]

      Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.  doi: 10.1002/anie.201101379

    4. [4]

      Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discovery 2002, 1, 493.  doi: 10.1038/nrd839

    5. [5]

      Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651.  doi: 10.1021/cr0505268

    6. [6]

      Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.  doi: 10.1021/cr100346g

    7. [7]

      Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.; Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181.  doi: 10.1039/c1cs15079k

    8. [8]

      (a) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
      (b) Stockton, K. P.; Merritt, C. J.; Sumby, C. J.; Greatrex, B. W. Eur. J. Org. Chem. 2015, 6999.
      (c) Li, J.-X.; Yang, S.-R.; Wu, W.-Q.; Jiang, H.-F. Eur. J. Org. Chem. 2018, 1284.

    9. [9]

      Albisson, D. A.; Bedford, R. B.; Lawrence, S. E.; Scully, P. N. Chem. Commun. 1998, 2095.

    10. [10]

      Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153.  doi: 10.1002/1521-3773(20001117)39:22<4153::AID-ANIE4153>3.0.CO;2-T

    11. [11]

      Yuan, D.; Huynh, H. V. Organometallics 2010, 29, 6020.  doi: 10.1021/om1008023

    12. [12]

      Bianchini, C.; Lee, H. M.; Meli, A.; Oberhauser, W.; Vizza, F.; Brüggeller, P.; Rainer, H. B.; Langes, C. Chem. Commun. 2000, 777.

    13. [13]

      Nair, P.; Anderson, G. K.; Rath, N. P. Organometallics 2003, 22, 1494.  doi: 10.1021/om0209069

    14. [14]

      Imamoto, T.; Yashio, K.; Crépy, K. V. L.; Katagiri, K.; Takahashi, H.; Kouchi, M.; Gridnev, I. D. Organometallics 2006, 25, 908.  doi: 10.1021/om050759p

    15. [15]

      Field, L. D.; Messerle, B. A.; Smernik, R. J.; Hambley, T. W.; Turner, P. Inorg. Chem. 1997, 36, 2884.  doi: 10.1021/ic970030b

    16. [16]

      (a) Laurenti, D.; Feuerstein, M.; Pèpe, G.; Doucet, H.; Santelli, M. J. Org. Chem. 2001, 66, 1633.
      (b) Feuerstein, M.; Laurenti, D.; Bougeant, C.; Doucet, H.; Santelli, M. Chem. Commun. 2001, 325.
      (c) Feuerstein, M.; Doucet, H.; Santelli, M. Synlett 2001, 9, 1458.
      (d) Feuerstein, M.; Doucet, H.; Santelli, M. Tetrahedron Lett. 2001, 42, 6667.
      (e) Feuerstein, M.; Doucet, H.; Santelli, M. J. Organomet. Chem. 2003, 687, 327.

    17. [17]

      Hierso, J.-C.; Fihri, A.; Amardeil, R.; Meunier, P.; Doucet, H.; Santelli, M.; Donnadieu, B. Organometallics 2003, 22, 4490.  doi: 10.1021/om0302948

    18. [18]

      Zaborova, E.; Deschamp, J.; Guieu, S.; Bleriot, Y.; Poli, G.; Menand, M.; Madec, D.; Prestat, G.; Sollogoub, M. Chem. Commun. 2011, 47, 9206.  doi: 10.1039/c1cc12241j

    19. [19]

      (a) Wang, K.; Yi, T.; Yu, X.-J.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Appl. Organomet. Chem. 2012, 26, 342.
      (b) Wang, K.; Fu, Q.; Zhou, R.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Appl. Organomet. Chem. 2013, 27, 232.
      (c) Wang, K.; Wang, W.; Luo, H.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Catal. Lett. 2013, 143, 1214.
      (d) Guo, F.-C.; Zhou, R.; Jiang, Z.-J.; Wang, W.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Catal. Commun. 2015, 66, 87.

    20. [20]

    21. [21]

    22. [22]

      Arumugam, V.; Kaminsky, W.; Bhuvanesh, N. S. P.; Nallasamy, D. RSC Adv. 2015, 5, 59428.  doi: 10.1039/C5RA10973F

    23. [23]

      Lysén, M.; Köhler, K. Synthesis 2006, 4, 692.
       

    24. [24]

      Jansa, J.; Jambor, R. Appl. Organomet. Chem. 2016, 30, 1036.  doi: 10.1002/aoc.3539

    25. [25]

      Ahmed, J.; Chakraborty, S.; Jose, A.; Mandal, S. K. J. Am. Chem. Soc. 2018, 140, 8330.  doi: 10.1021/jacs.8b04786

    26. [26]

      Klein, M.; Voigtmann, U.; Haack, T.; Erdinger, L.; Boche, G. Mutat. Res. 2000, 467, 55.  doi: 10.1016/S1383-5718(00)00012-7

    27. [27]

      Macé, Y.; Raymondeau, B.; Pradet, C.; Blazejewski, J. C.; Magnier, E. Eur. J. Org. Chem. 2009, 1390.

    28. [28]

      Ernst, J. B.; Rakers, L.; Glorius, F. Synthesis 2017, 49, 260.

    29. [29]

      Duan, X.-Y.; Li, P.-B.; Zhu, G.-R.; Fu, C.-L.; Chen, Q.; Huang, X.; Ma, S.-M. Org. Chem. Front. 2018, 5, 3319.  doi: 10.1039/C8QO00781K

    30. [30]

      Chiu, C. C.; Chiu, H. T.; Lee, D. S.; Lu, T. J. RSC Adv. 2018, 8, 26407.  doi: 10.1039/C8RA04094J

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    7. [7]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(7)
  • Abstract views(1348)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return