Citation: Xu Xinming, Chen Demao, Wang Zuli. Recent Progress in Transition Metal-Free C-Heteroatom Bond Formation by Functionalization of C-H Bond in Imidazole-Fused Heterocycles[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3338-3352. doi: 10.6023/cjoc201904068 shu

Recent Progress in Transition Metal-Free C-Heteroatom Bond Formation by Functionalization of C-H Bond in Imidazole-Fused Heterocycles

  • Corresponding author: Xu Xinming, xin_mingxu@163.com
  • Received Date: 27 April 2019
    Revised Date: 24 July 2019
    Available Online: 30 December 2019

    Fund Project: the Young Scholars Research Fund of Yantai University HY19B06Project supported by the Young Scholars Research Fund of Yantai University (Nos. HY19B06)

Figures(34)

  • Recently, the direct incorporation of heteroatom into imidazole-fused heterocycles through transition metal-free C-H functionalization has rapidly been advanced and become an eco-friendly synthetic tool for the synthesis of functionalized natural or bioactive molecules such as (hetero)arenes, olefins, carbonyl compounds. In particular, the C-H functionalization of imidazole-fused heterocycles has been considered to be the most important since it can lead to a new class of biologically active compounds. The recent progress in the incorporation of heteroatom into imidazole-fused heterocycles through transition metal-free C-H functionalization is introduced, and their mechanisms from a new perspective are also elaborated.
  • 加载中
    1. [1]

      (a) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
      (b) Frizon, T. E. A.; Rafique, J.; Saba, S.; Bechtold, I. V.; Gallardo, H.; Braga, A. L. Eur. J. Org. Chem. 2015, 16, 3470.
      (c) Li, G.-H.; Dong, D.-Q.; Yu, X.-Y.; Wang, Z.-L. New J. Chem. 2019, 43, 1667.
      (d) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
      (e) Li, G.-H.; Dong, D.-Q.; Deng, Q.; Yan, S.-Q.; Wang, Z.-L. Synthesis 2019, 51, 3313.
      (f) Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.

    2. [2]

      (a) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. Chem. Lett. 2019, DOI: 10.1016/j.cclet.2019.05.048.
      (b)Lhassani,M.;Chavignon,O.;Chezal,J.-M.;Teulade,J.-C.;Chapat,J.-P.;Snoeck,R.;Andrei,G.;Balzarini,J.;Clercq,E.D.;Gueiffier,A.Eur.J.Med.Chem.1999,34,271.

    3. [3]

      (a) Chitrakar, R.; Subbarayappa, A. Chem. Rec. 2017, 17, 1.
      (b) Dong, D.-Q.; Hao, S.-H.; Yang, D.-S.; Li, L.-X.; Wang, Z.-L. Eur. J. Org. Chem. 2017, 2017, 6576.
      (c) Sun, F.; Liu, X.; Chen, X.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2017, 37, 2211.
      (d) Jin, C.-A.; Xu, Q.; Feng, G.-F.; Jin, Y.; Zhang, L.-Y. Chin. J. Org. Chem. 2018, 38, 775.

    4. [4]

      (a) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667.
      (b) Fu, L; Wan, J.-P. Asian J. Org. Chem. 2019, 8, 767.
      (c) Jiang, X.; Wang, S.; Guo, G.; Lu, B. Chin. J. Org. Chem. 2017, 37, 841.
      (d) Wang, Y.; Liu, Y.-Y. Acta Chim. Sinica 2019, 77, 418.
      (e) Guo, Y; Xiang, Y.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
      (f) Gao, Y; Liu, Y.-Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.

    5. [5]

      (a) Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.
      (b) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 4972.
      (c) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
      (d) Yi, H.; Chen, H.; Bian, C.; Tang, Z.; Singh, A. K.; Qi, X.; Yue, X.; Yu, L.; Lee, J.-F.; Lei, A. Chem. Commun. 2017, 53, 6736.
      (e) Yin, Y.; Xie, J.; Huang, F.-Q.; Qi, L.-W.; Zhang, B. Adv. Synth. Catal. 2017, 359, 1037.

    6. [6]

      (a) Nordqvist, A.; Nilsson, M. T.; Lagerlund, O.; Muthas, D.; Gising, J.; Yahiaoui, S.; Odell, L. R.; Srinivasa, B. R.; Larhed, M.; Mowbray, S. L.; Karlen, A. Med. Chem. Commun. 2012, 3, 620.
      (b) Elleder, D.; Baiga, T. J.; Russell, R. L.; Naughton, J. A.; Hughes, S. H.; Noel, J. P.; Young, J. A. Virol. J. 2012, 9, 305.
      (c) Odell, L. R.; Nilsson, M. T.; Gising,, J.; Lagerlund O.; Muthas, D.; Nordqvist, A.; Karlen, A.; Larhed, M. Bioorg. Med. Chem. Lett. 2009, 19, 4790.

    7. [7]

      Wang, Y.; Frett, B.; McConnell, N.; Li, H. Org. Biomol. Chem. 2015, 13, 2958.  doi: 10.1039/C4OB02284J

    8. [8]

      Mondal, S.; Samanta, S.; Jana, S.; Hajra, A. J. Org. Chem. 2017, 82, 4504.  doi: 10.1021/acs.joc.7b00564

    9. [9]

      Singsardar, M.; Mondal, S.; Sarkar, R.; Hajra, A. ACS Omega 2018, 3, 12505.  doi: 10.1021/acsomega.8b02088

    10. [10]

      Samanta, S.; Ravi, C.; Rao, S. N.; Joshi, A.; Adimurthy, S. Org. Biomol. Chem. 2017, 15, 9590.  doi: 10.1039/C7OB02504A

    11. [11]

      Liu, K.; Wu, J.; Deng, Y.; Song, C.; Song, W.; Lei, A. ChemElectroChem 2019, 6, 4173.  doi: 10.1002/celc.201900138

    12. [12]

      Coutant, E. P.; Janin, Y. L. Chem. Eur. J. 2015, 21, 17158.  doi: 10.1002/chem.201501531

    13. [13]

      Zhang, J.; Lu, X.; Li, T.; Wang, S.; Zhong, G. J. Org. Chem. 2017, 82, 5222.  doi: 10.1021/acs.joc.7b00480

    14. [14]

      Kibriya, G.; Samanta, S.; Jana, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2017, 82, 13722.  doi: 10.1021/acs.joc.7b02582

    15. [15]

      (a) Hamdouchi, C.; Blas, J.; Prado, M.; Gruber, J.; Heinz, B. A.; Vance, L. J. Med. Chem. 1999, 42, 50.
      (b) Bochis, R. J.; Olen, L. E.; Fisher, M. H.; Reamer, R. A.; Wilks, G.; Taylor, J. E.; Olson, G. J. Med. Chem. 1981, 24, 1483.

    16. [16]

      (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
      (b) Martinek, M.; Korf, M.; Srogl, J. Chem. Commun. 2010, 46, 4387.
      (c) Sahoo, S. K.; Banerjee, A.; Chakraborty, S.; Patel, B. K. ACS Catal. 2012, 2, 544.
      (d) Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.
      (e) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 4972.
      (f) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
      (g) Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
      (h) Niu, B.; Xu, L.; Xie, P.; Wang, M.; Zhao, W.; Pittman, C. U.; Zhou, A. ACS Comb. Sci. 2014, 16, 454.

    17. [17]

      Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937.  doi: 10.1039/C4GC01462F

    18. [18]

      Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.  doi: 10.1021/acs.joc.6b01487

    19. [19]

      Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291.  doi: 10.1021/acs.joc.8b01878

    20. [20]

      Wu, S.; Feng, C.; Hu, D.; Huang, Y.; Li, Z.; Luo, Z.; Ma, S. Org. Biomol. Chem. 2017, 15, 1680.  doi: 10.1039/C6OB02736A

    21. [21]

      Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141.  doi: 10.1039/C7GC02906C

    22. [22]

      Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.  doi: 10.1002/cjoc.201800405

    23. [23]

      Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659.  doi: 10.1055/s-0034-1379941

    24. [24]

      Rafique, J.; Saba, S.; Rosrio, A.; R. Braga, A. L. Chem. Eur. J. 2016, 22, 1.  doi: 10.1002/chem.201504553

    25. [25]

      Bettanin, L.; Saba, S.; Doerner, C. V.; Franco, M. S.; Godoi, M.; Rafique, J.; Braga, A. L. Tetrahedron 2018, 74, 3971.  doi: 10.1016/j.tet.2018.05.084

    26. [26]

      Liu, W.-J.; Wang, S.; Chen, Y.-Z.; Huang, Y.; Li, Z.; Wang, A.-D. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 689.  doi: 10.1080/10426507.2015.1073278

    27. [27]

      Maddi, R. R.; Shirsat, P. K.; Kumar, S.; Meshram, H. M. ChemistrySelect 2017, 2, 1544.  doi: 10.1002/slct.201601460

    28. [28]

      An, Y.; Li, J.-X.; Li, M.; Li, C.-S.; Yang, S. Chin. J. Org. Chem. 2017, 37, 720(in Chinese).
       

    29. [29]

      (a) Xiao, F. H.; Xie, H.; Liu, S. W.; Deng, G. J. Adv. Synth. Catal. 2014, 356, 364.
      (b) Katrun, P.; Hongthong, S.; Hlekhlai, S.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. RSC Adv. 2014, 4, 18933.
      (c) Rao, H. H.; Wang, P.; Wang, J. C.; Li, Z. F.; Sun, X. Z.; Cao, S. L. RSC Adv. 2014, 4, 49165.

    30. [30]

      Huang, X.; Wang, S.; Li, B.; Wang, X.; Ge, Z.; Li, R. RSC Adv. 2015, 5, 22654.  doi: 10.1039/C4RA17237J

    31. [31]

      Guo, Y.-J.; Lu, S.; Tian, L.-L.; Huang, E.-L.; Hao, X.-Q.; Zhu, X.; Shao, T.; Song, M.-P. J. Org. Chem. 2018, 83, 338.  doi: 10.1021/acs.joc.7b02734

    32. [32]

      Sun, P.; Yang, D.; Wei, W.; Jiang, M.; Wang, Z.; Zhang, L.; Zhang, H.; Zhang, Z.; Wang, Y.; Wang, H. Green Chem. 2017, 19, 4785.  doi: 10.1039/C7GC01891F

    33. [33]

      Hajra, A.; Bagdi, A. K.; Mitra, S.; Ghosh, M. Org. Biomol. Chem. 2015, 13, 3314.  doi: 10.1039/C5OB00033E

    34. [34]

      Chowdhury, S. R.; Fadikar, P.; Hoque, I. U.; Maity, S. Asian J. Org. Chem. 2018, 7, 332.  doi: 10.1002/ajoc.201700670

    35. [35]

      Ravi, C.; Joshi, A.; Adimurthy, S. Eur. J. Org. Chem. 2017, 2017, 3646.  doi: 10.1002/ejoc.201700487

    36. [36]

      (a) Pang, Y.; An, B.; Lou, L.; Zhang, J.; Yan, J.; Huang, L.; Li, X.; Yin, S. J. Med. Chem. 2017, 60, 7300.
      (b) Kumar, S.; Johansson, H.; Kanda, T.; Engman, L.; Muller, T.; Bergenudd, H.; Jonsson, M. Eur. J. Org. Chem. 2017, 2017, 3055.
      (c) Kumar, S.; Sharma, N.; Maurya, I.; Bhasin, A. K. K.; Wangoo, N.; Brandao, P.; Fleix, V.; Kumar, R. K. Eur. J. Med. Chem. 2016, 123, 916.

    37. [37]

      (a) Perin, G.; Lenardao, E. J.; Jacob, R. G.; Panatieri, R. B. Chem. Rev. 2009, 109, 1277.
      (b) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.
      (c) Abdo, M.; Zhang, Y.; Schramm, V. L.; Knapp, S. Org. Lett. 2010, 12, 2982.
      (d) Rafique, J.; Saba, S.; Rosario, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 11854.
      (e) Shu, S.; Fan, Z.; Yao, Q.; Zhang, A. J. Org. Chem. 2016, 81, 5263.
      (f) Sun, K.; Wang, X.; Lv, Y.; Li, G.; Jiao, H.; Dai, C.; Li, Y.; Zhang, C.; Liu, L. Chem. Commun. 2016, 52, 8471.

    38. [38]

      (a) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.
      (b); Zhong, S.; Xie, L.; Cao, X.; Liu, Y.-Y.; Wei, L. Org. Lett. 2016, 18, 584.
      (c) Zhong, S.; Liu, Y.-Y.; Cao, X.; Wei, L.; Wan, J.-P. ChemCatChem 2017, 9, 465.

    39. [39]

      Rafique, J.; Saba, S.; Franco, M. S.; Bettanin, L.; Schneider, A. R.; Silva, L. T.; Braga, A. L. Chem. Eur. J. 2018, 24, 4173.  doi: 10.1002/chem.201705404

    40. [40]

      Rodrigues, I.; Barcellos, A. M.; Belladona, A. L.; Roehrs, J. A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R. F. Tetrahedron 2018, 74, 4242.  doi: 10.1016/j.tet.2018.06.046

    41. [41]

      Guo, T.; Wei, X.; Liu, Y.; Zhang, P.; Zhao, Y. Org. Chem. Front. 2019, 6, 1414.  doi: 10.1039/C9QO00198K

    42. [42]

      Kim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2019, 60, 739.  doi: 10.1016/j.tetlet.2019.02.001

    43. [43]

      (a) Winterton, N. Green Chem. 2000, 2, 173.
      (b) Gribble, G. W. J. Chem. Educ. 2004, 81, 1441.
      (c) Liu, C.; Zhang, B. Chem. Record. 2016, 16, 667.
      (d) Fujimori, D. G.; Walsh, C. T. Curr. Opin. Chem. Biol. 2007, 11, 553.
      (e) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.

    44. [44]

      (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
      (b) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583.

    45. [45]

      Liu, P.; Gao, Y.; Gu, W.; Shen, Z.; Sun, P. J. Org. Chem. 2015, 80, 11559.  doi: 10.1021/acs.joc.5b01961

    46. [46]

      Dey, A.; Singsardar, M.; Sarkar, R.; Hajra, A. ACS Omega 2018, 3, 3513.  doi: 10.1021/acsomega.7b01844

    47. [47]

      Mondal, S.; Samanta, S.; Singsardar, M.; Mishra, S.; Mitra, S.; Hajra, A. Synthesis 2016, 48, 4009.  doi: 10.1055/s-0035-1562492

    48. [48]

      Zhao, C.; Li, F.; Yang, S.; Liu, L.; Huang, Z.; Chai, H. Chem. Heterocycl. Compd. 2018, 54, 568.  doi: 10.1007/s10593-018-2307-x

    49. [49]

      Li, J.; Tang, J.; Wu, Y.; He, Q.; Yu, Y. RSC Adv. 2018, 8, 5058.  doi: 10.1039/C7RA12100H

    50. [50]

      Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.  doi: 10.1021/acs.joc.8b02637

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    3. [3]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    4. [4]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    5. [5]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    11. [11]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    12. [12]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    13. [13]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    14. [14]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    15. [15]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    16. [16]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    17. [17]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    18. [18]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    19. [19]

      Yan LuoYan-Jiao LuMei-Mei PanYu-Feng LiangWei-Min ShiChun-Hua ChenCui LiangGui-Fa SuDong-Liang Mo . Rapidly diastereoselective assembly of ten-membered N-heterocycles between two 1,3-dipoles and their diversity to access fused N-heterocycles. Chinese Chemical Letters, 2025, 36(5): 110207-. doi: 10.1016/j.cclet.2024.110207

    20. [20]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

Metrics
  • PDF Downloads(6)
  • Abstract views(722)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return