Citation: Zheng Limeng, Shi Dongdong, Bao Hanyang, Liu Yunkui. Copper(0)/Selectfluor System-Catalyzed Tandem Annulation/ Aromatization of o-Aryl Benzenesulfonylimides: A Facile Synthesis of 6H-Phenanthridines[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2821-2828. doi: 10.6023/cjoc201904058 shu

Copper(0)/Selectfluor System-Catalyzed Tandem Annulation/ Aromatization of o-Aryl Benzenesulfonylimides: A Facile Synthesis of 6H-Phenanthridines

  • Corresponding author: Liu Yunkui, ykuiliu@zjut.edu.cn
  • Received Date: 24 April 2019
    Revised Date: 26 May 2019
    Available Online: 12 October 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772176, 21372201), the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technologythe National Natural Science Foundation of China 21772176the National Natural Science Foundation of China 21372201

Figures(4)

  • A facile and efficient method for the synthesis of 6H-phenanthridines has been successfully developed involving a copper(0)/Selectfluor system-catalyzed tandem annulation/aromatization of o-aryl benzenesulfonylimides. A variety of substituted 6H-phenanthridines were synthesized in moderate to good yields under mild reaction conditions. Mechanistic experiments revealed that the reaction might involve an oxycupration of C=N bond followed by an intramolecular C-H bond amination as the key steps triggered by an in situ generated copper species XCuOH (X=F or BF4) from the Cu(0)/Selectfluor system.
  • 加载中
    1. [1]

      (a) Cushman, M.; Mohan, P.; Smith, E. C. R. J. Med. Chem. 1984, 27, 544.
      (b) Fang, S. D.; Wang, L. K.; Hecht, S. M. J. Org. Chem. 1993, 58, 5025.
      (c) Lynch, M. A.; Duval, O.; Sukhanova, A.; Devy, J.; Mackay, S. P.; Waigh, R. D.; Nabiev, I. Bioorg. Med. Chem. Lett. 2001, 11, 2643.
      (d) Bernardo, P. H.; Wan, K. F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
      (e) Zhu, S.; Ruchelman, A. L.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2005, 1, 6782.
      (f) Li, D.; Zhao, B.; Sim, S.-P.; Li, T.-K.; Liu, A.; Liu, L. F.; Edmond, J.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 521.
      (g) Tsukamoto, H.; Kondo, S.; Mukudai, Y.; Nagumo, T.; Yasuda, A.; Kurihara, Y.; Kamatani, T.; Shintani, S. Anticancer Res. 2011, 31, 2841.

    2. [2]

      (a) Cushman, M.; Mohan, P.; Smith, E. C. R. J. Med. Chem. 1984, 27, 544.
      (b) Fang, S. D.; Wang, L. K.; Hecht, S. M. J. Org. Chem. 1993, 58, 5025.
      (c) Lynch, M. A.; Duval, O.; Sukhanova, A.; Devy, J.; Mackay, S. P.; Waigh, R. D.; Nabiev, I. Bioorg. Med. Chem. Lett. 2001, 11, 2643.
      (d) Bernardo, P. H.; Wan, K. F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
      (e) Zhu, S.; Ruchelman, A. L.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2005, 13, 6782.
      (f) Li, D.; Zhao, B.; Sim, S.-P.; Li, T.-K.; Liu, A.; Liu, L. F.; Edmond, J.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 521.
      (g) Tsukamoto, H.; Kondo, S.; Mukudai, Y.; Nagumo, T.; Yasuda, A.; Kurihara, Y.; Kamatani, T.; Shintani, S. Anticancer Res. 2011, 31, 2841.

    3. [3]

      (a) Stevens, N.; O'Connor, N.; Vishwasrao, H.; Samaroo, D.; Kandel, E. R.; Akins, D. L.; Drain, C. M.; Rurro, N. J. J. Am. Chem. Soc. 2008, 130, 7182.
      (b) Bondarev, S. L.; Knyukshto, V. N.; Tikhomirov, S. A.; Pyrko, A. N. Opt. Spectrosc. 2006, 100, 386.
      (c) Zhang, J.; Lakowicz, J. R. J. Phys. Chem. B 2005, 109, 8701.

    4. [4]

      For selected recent reviews, see: (a) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
      (b) Hayashi, H.; Kaga, A.; Chiba, S. J. Org. Chem. 2017, 82, 11981.
      (c) Hu, B.; DiMagno, S. G. Org. Biomol. Chem. 2015, 13, 3844.

    5. [5]

      (a) Pictet, A.; Hubert, A. Ber. Dtsch. Chem. Ges. 1896, 29, 1182.
      (b) Morgan, T.; Walls, L. P. J. Chem. Soc., 1931, 2447.
      (c) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2014, 50, 2442.

    6. [6]

      (a) Ge, J.; Wang, X.; Liu, T.; Shi, Z.; Xiao, Q.; Yin, D. RSC Adv. 2016, 6, 19571.
      (b) Sahoo, M. K.; Midya, S. P.; Landge, V. G.; Balaraman, E. Green Chem. 2017, 19, 2111.
      (c) Candito, D. A.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 6713.
      (d) Xu, Z.; Hang, Z.; Liu, Z.-Q. Org. Lett. 2016, 18, 4470.
      (e) Li, Z.; Fan, F.; Yang, J.; Liu, Z.-Q. Org. Lett. 2014, 16, 3396.
      (f) Xu, Z.; Yan, C.; Liu, Z.-Q. Org. Lett. 2014, 16, 5670.

    7. [7]

      (a) Dai, Q.; Yun, J.-T.; Feng, X.; Jiang, Y.; Yang, H.; Cheng, J. Adv. Synth. Catal. 2014, 356, 3341.
      (b) Sha, W.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 9179.
      (c) Tu, H.-Y.; Liu, Y.-R.; Chu, J.-J.; Hu, B.-L.; Zhang, X.-G. J. Org. Chem. 2014, 79, 9907.
      (d) Jiang, H.; An, X.; Tong, K.; Zhang Y.; Yu, S. Angew. Chem. Int. Ed. 2015, 54, 4055.
      (e) Cao, J.-J.; Zhu, T.-H.; Wang, S.-Y.; Gu, Z.-Y.; Wang, X.; Ji, S.-J. Chem. Commun. 2014, 50, 6439.
      (f) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem. Int. Ed. 2013, 52, 10792.
      (g) Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898.
      (h) Wang, Y.-F.; Lonca, G. H.; Runigo, M. L.; Chiba, S. Org. Lett., 2014, 16, 4272.
      (i) Lu, L.; Zhou, B.; Jin H.; Liu, Y. Chin. J. Org. Chem. 2019, 39, 515(in Chinese).
      (陆露露, 周丙伟, 金红卫, 刘运奎, 有机化学, 2019, 39, 515.)
      (j) Shi, D.; Bao, H.; Xu, Z.; Liu, Y. Chin. J. Org. Chem. 2017, 37, 1290(in Chinese).
      (施冬冬, 鲍汉扬, 徐峥, 刘运奎, 有机化学, 2017, 37, 1290.)

    8. [8]

      (a) Evoniuk, C. J.; dos Passos Gomes, Hill, G.; S. P.; Fujita, S.; Hanson, K.; Alabugin, I. V. J. Am. Chem. Soc. 2017, 139, 16210.
      (b) Evoniuk, C. J.; Hill, S. P.; Hanson, K.; Alabugin, I. V. Chem. Commun. 2016, 52, 7138.
      (c) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.

    9. [9]

      (a) Liu, Y.-Y.; Song, R.-J.; Wu, C.-Y.; Gong, L.-B.; Hu, M.; Wang, Z.-Q.; Xie, Y.-X.; Li, J.-H. Adv. Synth. Catal. 2012 354, 347.
      (b) Borah, A.; Gogoi, P. Eur. J. Org. Chem. 2016, 2200.
      (c) Han, W.; Zhou, X.; Yang, S.; Xiang, G.; Cui, B.; Chen, Y. J. Org. Chem. 2015, 80, 11580.
      (d) Maestri, G.; Larraufie, M.-H.; Derat, É .; Ollivier, C.; Fensterbank, L.; Lacȏte, E.; Malacria, M. Org. Lett. 2010, 12, 5692.
      (e) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2008, 73, 5558.
      (f) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem. Int. Ed. 2015, 54, 4055.
      (g) An, X.-D.; Yu, S. Org. Lett. 2015, 17, 2692.
      (h) Ghosh, M.; Ahmed, A.; Singha, R.; Ray, J. K. Tetrahedron Lett. 2015, 56, 353.
      (i) Portela, C. F.; Scanlan, E. M.; Scott, J. S.; Walton, J. C. Chem. Commun. 2008, 4189.
      (j) Tummatorn, J.; Krajangsri, S.; Norseeda, K.; Thongsornkleeb, C.; Ruchirawat, S. Org. Biomol. Chem. 2014, 12, 5077.
      (k) Budén, M.; Dorn, V. B.; Gamba, M.; Píerini, A. B.; Rossi, R. A. J. Org. Chem. 2010, 75, 2206.
      (l) Linsenmeier, A. M.; Williams, C. M.; Brä se, S. J. Org. Chem. 2011, 76, 9127.
      (m) McBurney, R. T.; Slawin, A. M. Z.; Smart, L. A.; Yu, Y.; Walton, J. C. Chem. Commun. 2011, 47, 7974.
      (n) Hofstra, J. L.; Grassbaugh, B. R.; Tran, Q. M.; Armada, N. R.; de Lijser, H. J. P. J. Org. Chem. 2015, 80, 256.
      (o) Chen, W.-L.; Chen, C.-Y.; Chen, Y.-F.; Hsieh, J.-C. Org. Lett. 2015, 17, 1613.

    10. [10]

      Selected reviews: (a) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
      (b) Egami, H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53, 8294.
      (c) Shimizu, Y.; Kanai, M. Tetrahedron Lett. 2014, 55, 3727.
      (d) McDonald, R.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
      (e) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
      (f) Vlaar, T.; Ruijter, E.; Orru, R. Adv. Synth. Catal. 2011, 353, 809.
      (g) Giri, R.; Shekhar, K. C. J. Org. Chem. 2018, 83, 3013. (h) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.

    11. [11]

      Addition of XCuOH to carbon-carbon multiple bonds, see: (a) Zhang, W.; Zhang, J.; Liu, Y.; Xu, Z. Synlett 2013, 24, 2709.
      (b) Zhang, J.; Wu, D.; Chen, X.; Liu, Y.; Xu, Z. J. Org. Chem. 2014, 79, 4799.
      (c) Zhang, J.; Wang, H.; Ren, S.; Zhang, W.; Liu, Y. Org. Lett. 2015, 17, 2920.
      (d) Zhang, J.; Zhang, H.; Shi, D.; Jin, H.; Liu, Y. Eur. J. Org. Chem. 2016, 5545.
      (e) Bao, H.; Xu, Z.; Wu, D.; Zhang, H.; Jin, H.; Liu, Y. J. Org. Chem. 2017, 82, 109.

    12. [12]

      Addition of XCuOH to C=O bonds, see: (f) Zhang, J.; Shi, D.; Zhang, H.; Xu, Z.; Bao, H.; Jin, H.; Liu, Y. Tetrahedron 2017, 73, 154.

    13. [13]

      (a) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 3243.
      (b) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 2892.
      (c) Zhou, W.; Liu, Y.; Yang, Y.; Deng, G.-J. Chem. Commun. 2012, 48, 10678.

    14. [14]

      (a) Srimani, D.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2014, 53, 11092, and references cited therein.
      (b) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833.
      (c) Blakemore, P. R. J. Chem. Soc. Perkin Trans 2002, 2563.
      (d) Chatterjee, B.; Bera, S.; Mondal, D. Tetrahedron: Asymmetry 2014, 25, 1.

    15. [15]

      Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 2003, 68, 3112.

    16. [16]

      Qiu, J.; Wang, L.; Liu, M.; Shen, Q.; Tang, J. Tetrahedron Lett. 2011, 52, 6489.  doi: 10.1016/j.tetlet.2011.09.115

    17. [17]

      Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett. 1988, 29, 5463.  doi: 10.1016/S0040-4039(00)80787-X

    18. [18]

      Keene, B. R. T. J. Chem. Soc. 1965, 3032.

    19. [19]

      Badger, G. M.; Sasse, W. F. H. J. Chem. Soc. 1957, 4.

    20. [20]

      Maestri, G.; Larraufie, M.-H.; Derat, E.; Ollivier, C.; Fensterbank, L.; Lacote, E.; Malacria, M. Org. Lett. 2010, 12, 5692.  doi: 10.1021/ol102509n

    21. [21]

      Coombs, M. M. J. Chem. Soc. 1958, 3454.  doi: 10.1039/jr9580003454

    22. [22]

      Arcus, C. L.; Coombs, M. M.; Evans, J. V. J. Chem. Soc. 1956, 1498.  doi: 10.1039/jr9560001498

    23. [23]

      Kessar, S. V.; Grupta, Y. P.; Balakrishnan, P.; Sawal, K. K.; Mohammad, T.; Dutt, M. J. Org. Chem. 1988, 53, 1708.  doi: 10.1021/jo00243a020

  • 加载中
    1. [1]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    2. [2]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    3. [3]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    6. [6]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    7. [7]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    8. [8]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    9. [9]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    10. [10]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    11. [11]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    12. [12]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    13. [13]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    14. [14]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    17. [17]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    18. [18]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    19. [19]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    20. [20]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

Metrics
  • PDF Downloads(7)
  • Abstract views(1355)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return