Citation: Wang Maorui, Wu Yuzheng, Yao Jian, Deng Li, Pan Yingming, Huang Kebin, Tang Haitao. Triethylamine Promoted the C-C Bond Cleavage of α-Halo Ketones: α-Acetoxyaryl Ketone Synthesis[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3223-3229. doi: 10.6023/cjoc201904051 shu

Triethylamine Promoted the C-C Bond Cleavage of α-Halo Ketones: α-Acetoxyaryl Ketone Synthesis

  • Corresponding author: Huang Kebin, kbhuang@mailbox.gxnu.edu.cn Tang Haitao, httang@gxnu.edu.cn
  • Received Date: 22 April 2019
    Revised Date: 7 June 2019
    Available Online: 2 November 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21362002), and the Bagui Scholar Program of Guangxi Province of China (No. 2016A13)the Bagui Scholar Program of Guangxi Province of China 2016A13the National Natural Science Foundation of China 21362002

Figures(4)

  • The cleavage of C-C bonds is a key method for synthesis of useful intermediates. A novel amine-promoted C-C bond cleavage of α-halo ketones was reported. Oxidant-free and metal-free conditions are the striking features of the protocol. In this simple method, a variety of α-acetoxyaryl ketone compounds were prepared from commercially available α-halo ketones in good to excellent yields.
  • 加载中
    1. [1]

      (a) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
      (b) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
      (c) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47, 1137.
      (d) Murakami, M.; Ishida, N. J. Am. Chem. Soc. 2016, 138, 13759.
      (e) Tiwari, B.; Zhang, J.; Chi, Y. R. Angew. Chem. Int. Ed. 2012, 51, 1911.
      (f) Sai, M.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2011, 50, 3294.
      (g) Chen, W.-L.; Wu, S.-Y.; Mo, X.˗L.; Wei, L.˗X.; Liang, C.; Mo, D.˗L. Org. Lett. 2018, 20, 3527.

    2. [2]

      (a) Tobisu, M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300.
      (b) Qin, C.; Shen, T.; Tang, C.; Jiao, N. Angew. Chem. Int. Ed. 2012, 51, 6971.
      (c) Qin, C.; Zhou, W.; Chen, F.; Ou, Y.; Jiao, N. Angew. Chem. Int. Ed. 2011, 50, 12595.
      (d) Klein, J. E. M. N.; Plietker, B. Org. Biomol. Chem. 2013, 11, 1271.
      (e) Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597.
      (f) Bart, S. C.; Chirik, P. J. J. Am. Chem. Soc. 2003, 125, 886.
      (g) Seiser, T.; Cramer, N. J. Am. Chem. Soc. 2010, 132, 5340.
      (h) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 7740.
      (i) Jun, C-H. Chem. Soc. Rev., 2004, 33, 610.

    3. [3]

      (a) Kumar, K. A. A.; Venkateswarlu, V.; Vishwakarma, R. A.; Sawant, S. D. Synthesis 2015, 47, 3161.
      (b) Zhang, J.; Jiang, J.; Li, Y.; Zhao, Y.; Wan, X. Org. Lett. 2013, 15, 3222.

    4. [4]

      Liu, L.; Ishida, N.; Murakami, M. Angew. Chem. Int. Ed. 2012, 51, 2485.  doi: 10.1002/anie.201108446

    5. [5]

      (a) Wang, M.; Lu, J.; Zhang, X.; Li, L.; Li, H.; Luo, N.; Wang, F. ACS Catal. 2016, 6, 6086.
      (b) Liu, H.; Wang, M. Li, H.; Luo, N.; Xu, S.; Wang, F. J. Catal. 2017, 346, 170.
      (c) Wang, M.; Lu, J.; Li, L.; Li, H.; Liu, H.; Wang, F. J. Catal. 2017, 348, 160.
      (d) Anjum, A.; Srinivas, P. Chem. Lett. 2001, 9, 900.
      (e) Baruah, S.; Borthakur, S.; Gogoi, S. Chem. Commun. 2017, 53, 9133.
      (f) Nakamura, R.; Obora, Y.; Ishii, Y. Adv. Synth. Catal. 2009, 351, 1677.
      (g) Minisci, F.; Recupero, F.; Pedulli, G. F.; Lucarini, M. J. Mol. Catal. A 2003, 204~205, 63.
      (h) Minisci, F.; Recupero, F.; Fontana, F.; Bjϕrsvik, H˗R.; Liguori, L. Synlett. 2002, 610.
      (i) Sathyanarayana, P.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. Org. Biomol. Chem. 2015. 13, 9681.

    6. [6]

      (a) Xu, L.; Wang, S.; Chen, B.; Li, M.; Hu, X.; Hu, B.; Jin, L.; Sun, N.; Shen, Z. Synlett. 2018, 1505.
      (b) Shaikh, T. M. A.; Sudalai, A. Eur. J. Org. Chem. 2008, 4877.
      (c) Santaniello, E.; Manzocchi, A.; Farachi, C. Synthesis 1980, 563.
      (d) Lee, J. C.; Lee, J. M. Synth. Commun. 2006, 36, 1071.
      (e) Lee, J. C.; Choi, J. H.; Lee, Y. C. Synlett. 2001, 1563.

    7. [7]

      (a) Liu, H.; Li, H.; Lu, J.; Zeng, S.; Wang, M.; Luo, N.; Xu, S.; Wang, F. ACS Catal. 2018, 8, 4761.
      (b) Hirashima, S˗i.; Nobuta, T.; Tada, N.; Itoh, A. Synlett 2009, 2017.
      (c) Yamaguchi, T.; Matsusaki, Y.; Tada, N.; Miura, T.; Itoh, A. Photochem. Photobiol. Sci. 2013, 12, 417.

    8. [8]

      (a) Sathyanarayana, P.; Upare, A.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. RSC Adv. 2016, 6, 22749.
      (b) Angeles, N. A.; Villavicencio, F.; Guadarrama, C.; Corona, D.; Cuevas˗Yañez, E. J. Braz. Chem. Soc. 2010, 21, 905.
      (c) Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Org. Lett. 2009, 11, 3810.
      (d) Rajendar, K.; Kant, R.; Narender, T. Adv. Synth. Catal. 2013, 355, 3591.

    9. [9]

      (a) Caputo, D. F. J.; Arroniz, C.; Dürr, A. B.; Mousseau, J. J.; Stepan, A. F.; Mansfield, S. J.; Anderson, E. A. Chem. Sci. 2018, 9, 5295.
      (b) Ram, R. N.; Soni, V. K. J. Org. Chem. 2015, 80, 8922.
      (c) Luo, J.; Zhang, X.; Zhang, J. ACS Catal. 2015, 5, 2250.
      (d) Xu, G˗C.; Yu, H˗L.; Zhang, X˗Y.; Xu, J˗H. ACS Catal. 2012, 2, 2566.
      (e) Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951.
      (f) Jiang, H.; Bak, J. R.; López˗Delgado, F. J.; Jørgensen, K. A. Green Chem. 2013, 15, 3355.
      (g) Zhou, F.; Hu, X.; Gao, M.; Cheng, T.; Liu, G. Green Chem. 2016, 18, 5651.
      (h) Toma, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2007, 9, 3195.

    10. [10]

      Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623.  doi: 10.1021/ja511796h

    11. [11]

      (a) Tong, W.; Li, W.˗H.; He, Y.; Mo, Z.˗Y.; Tang, H.˗T.; Wang, H.˗S.; Pan, Y.˗M. Org. Lett. 2018, 20, 2494.
      (b) He, Y.; Wang, Y.; Liang, X.; Huang, B.; Wang, H.; Pan, Y.˗M.; Org. Lett. 2018, 20, 7117.
      (c) Huang, X.˗Y.; Ding, R.; Mo, Z.˗Y.; Xu, Y.˗L.; Tang, H.˗T.; Wang, H.˗S.; Chen, Y.˗Y.; Pan, Y.˗M. Org. Lett. 2018, 20, 4819.
      (d) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
      (e) Wang, X.; Xiong, W.; Huang, Y.; Zhu, J.; Hu, Q.; Wu, W.; Jiang, H. Org. Lett. 2017, 19, 5818.
      (f) Hu, W.; Li, J.; Xu, Y.; Li, J.; Wu, W.; Liu, H.; Jiang, H. Org. Lett. 2017, 19, 678.
      (g) Peng, J.; Gao, Y.; Hu, W.; Gao, Y.; Hu, M.; Wu, W.; Ren, Y.; Jiang, H. Org. Lett. 2016, 18, 5924.

    12. [12]

      (a) Tan, L.; Chen, C.; Liu, W. Beilstein J. Org. Chem. 2017, 13, 1079.
      (b) Jia, W˗G.; Zhang, H.; Li, D˗D.; Yan, L˗Q. RSC Adv. 2016, 6, 27590.

  • 加载中
    1. [1]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    2. [2]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    3. [3]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    8. [8]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    9. [9]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    10. [10]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    11. [11]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    12. [12]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    13. [13]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    14. [14]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    15. [15]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    18. [18]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    19. [19]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    20. [20]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

Metrics
  • PDF Downloads(6)
  • Abstract views(814)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return