Citation: Sun Weidong, Ye Lin, Liu Jia, Zheng Lu, Guo Wencai, Han Senkai, Shao Chengyuan, Jiang Hua. Self-Assembled of Corannulene-Based Molecular Cage with Fullerenes as Template[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2867-2874. doi: 10.6023/cjoc201904042 shu

Self-Assembled of Corannulene-Based Molecular Cage with Fullerenes as Template

  • Corresponding author: Jiang Hua, jiangh@bnu.edu.cn
  • Received Date: 16 April 2019
    Revised Date: 8 May 2019
    Available Online: 3 October 2019

    Fund Project: Project supported by the Major State Basic Research Development Program of China (973 Program, No. 2015CB856502) and the National Natural Science Foundation of China (Nos. 21572023, 21672026)the Major State Basic Research Development Program of China 973 Program, No. 2015CB856502the National Natural Science Foundation of China 21572023the National Natural Science Foundation of China 21672026

Figures(7)

  • A tetrapyridyl substituted corannulene derivative COPY2 was designed and synthesized. Only in the presence of template molecule C60 or C70, COPY2 and palladium could form 1:1 molecular cage complex C60/70COPY2-Pd by self-assembly at room temperature and 55℃ respectively. C60 and C70 were used not only as a template for constructing target molecular cages, but also as a stabilizer for molecular cage. When 1.0 equiv. C70 mixed with C60COPY2-Pd or 1.0 equiv. C60 mixed with C70COPY2-Pd, the ratio of complex C60COPY2-Pd to C70COPY2-Pd is 4:1 after the mixtures were heated at 90℃ for 48 h, which is consistent with the ratio of COPY2 and Pd(CH3CN)2Cl2 mixed with C60 and C70 (1:1). Only the complex C60COPY2-Pd was observed when the ratio of C60 to C70 is 2:1. However, even the ratio of C60 to C70 is 1:2, complex C60COPY2-Pd is still the dominant species in the mixture. These results demonstrate that complexing ability of COPY2 with C60 is stronger than that of COPY2 with C70. 4-Dimethylaminopyridine (DMAP) was chosen to dissociate the cage so as to release fullerene and ligand. Therefore, the ligand COPY2 could be used to the enrichment of C60 at room temperature.
  • 加载中
    1. [1]

      Prato, M. J. Mater. Chem. 1997, 7, 1097.  doi: 10.1039/a700080d

    2. [2]

      Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323.  doi: 10.1002/adma.200801283

    3. [3]

      Iwasa, Y. Nature 2010, 466, 191.  doi: 10.1038/466191a

    4. [4]

      Liu, G. F.; Filipovic, M.; Ivanovic-Burmazovic, I.; Beuerle, F.; Witte, P.; Hirsch, A. Angew. Chem., Int. Ed. 2008, 47, 3991.  doi: 10.1002/anie.200800008

    5. [5]

      Hirsch, A.; Brettreich, M. Fullerenes:Chemistry and Reactions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005.

    6. [6]

      (a) Shi, H.; Cheng, X.; Lin, Q.; Yao, H.; Zhang, Y.; Wei, T. Chin. J. Org. Chem. 2018, 38, 1718.
      (b) Bai, D.; Zhou, Y.; Lu, J.; Liu, Q.; Chen, Q.; Tao, Z.; Xiao, X. Chin. J. Org. Chem. 2018, 38, 1477.
      (c) Li, W.; Qu, W.; Zhang, H.; Li, X.; Lin, Q.; Yao, H.; Zhang, Y.; Wei, T. Chin. J. Org. Chem. 2017, 37, 2639.
      (d) Yang, L.; Hu, J.; Zeng, W.; Wu, Y.; Li, X.; Zhang, D.; Jin, W. Chin. J. Org. Chem. 2017, 37, 2654.
      (e) Yi, J.; Chen, M.; Xue, S.; Tao, Z. Chin. J. Org. Chem. 2016, 36, 653.

    7. [7]

      (a) Garcia-Simon, C.; Costas, M.; Ribas, X. Chem., Soc. Rev. 2016, 45, 40.
      (b) Canevet, D.; Perez, E. M.; Martin, N. Angew. Chem. Int. Ed. 2011, 50, 9248.
      (c) Tashiro, K.; Aida, T. Chem. Soc. Rev. 2007, 36, 189.

    8. [8]

      (a) Lu, Y.; Fu, Z. D.; Guo, Q. H.; Wang, M. X. Org. Lett. 2017, 19, 1590.
      (b) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477.

    9. [9]

      (a) Rizzuto, F. J.; Nitschke, J. R. Nat. Chem. 2017, 9, 903.
      (b) Kishi, N.; Akita, M.; Yoshizawa, M. Angew. Chem., Int. Ed. 2014, 53, 3604.
      (c) Mahata, K.; Frischmann, P. D.; Wurthner, F. J. Am. Chem. Soc. 2013, 135, 15656.
      (d) Meng, W.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.; Nitschke, J. R. Angew. Chem., Int. Ed. 2011, 50, 3479.
      (e) Kishi, N.; Li, Z.; Yoza, K.; Akita, M.; Yoshizawa, M. J. Am. Chem. Soc. 2011, 133, 11438.

    10. [10]

      (a) Inokuma, Y.; Arai, T.; Fujita, M. Nat. Chem. 2010, 2, 780.
      (b) Sun, D.; Tham, F. S.; Reed, C. A.; Boyd, P. D. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5088.

    11. [11]

      (a) Zhang, C.; Wang, Q.; Long, H.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 20995.
      (b) Yanagisawa, M.; Tashiro, K.; Yamasaki, M.; Aida, T. J. Am. Chem. Soc. 2007, 11912.
      (c) Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2004, 126, 6570.

    12. [12]

      (a) Huerta, E.; Metselaar, G. A.; Fragoso, A.; Santos, E.; Bo, C.; de Mendoza, J. Angew. Chem. Int. Ed. 2007, 46, 202.
      (b) Huerta, E.; Cequier, E.; de Mendoza, J. Chem. Commun. 2007, 5016.
      (c) Huerta, E.; Isla, H.; Pérez, E. M.; Bo, C.; Martín, N.; Mendoza, J. D. J. Am. Chem. Soc. 2010, 132, 5351.
      (d) Li, M.-J.; Huang, C.-H.; Lai, C.-C.; Chiu, S.-H. Org. Lett. 2012, 14, 6146.

    13. [13]

      (a) Ke, X. S.; Kim, T.; Lynch, V. M.; Kim, D.; Sessler, J. L. J. Am. Chem. Soc. 2017, 139, 13950.
      (b) Ke, X. S.; Kim, T.; Brewster, J. T., 2nd; Lynch, V. M.; Kim, D.; Sessler, J. L. J. Am. Chem. Soc. 2017, 139, 4627.
      (c) Tian, X. H.; Chen, C. F. Chem.-Eur. J. 2010, 16, 8072.
      (d) Haino, T.; Fukunaga, C.; Fukazawa, Y. Org. Lett. 2006, 8, 3545.
      (e) Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem., Int. Ed. 1998, 37, 997.
      (f) Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem., lnt. Ed. 1997, 36, 259.
      (g) Atwood, J. L.; Koutsantonis, G. A.; Raston, C. L. Nature 1994, 368, 229.

    14. [14]

      (a) Yang, D. C.; Li, M.; Chen, C. F. Chem. Commun. 2017, 53, 9336.
      (b) Yanney, M.; Fronczek, F. R.; Sygula, A. Angew. Chem., Int. Ed. 2015, 54, 11153.
      (c) Alvarez, C. M.; Garcia-Escudero, L. A.; Garcia-Rodriguez, R.; Martin-Alvarez, J. M.; Miguel, D.; Rayon, V. M. Dalton Trans. 2014, 43, 15693.
      (d) Sygula, A.; Fronczek, F. R.; Sygula, R.; Rabideau, P. W.; Olmstead, M. M. J. Am. Chem. Soc. 2007, 129, 3842.

    15. [15]

      (a) Davis, C. M.; Lim, J. M.; Larsen, K. R.; Kim, D. S.; Sung, Y. M.; Lyons, D. M.; Lynch, V. M.; Nielsen, K. A.; Jeppesen, J. O.; Kim, D.; Park, J. S.; Sessler, J. L. J. Am. Chem. Soc. 2014, 136, 10410.
      (b) Jurow, M.; Farley, C.; Pabon, C.; Hageman, B.; Dolor, A.; Drain, C. M. Chem. Commun. 2012, 48, 4731.
      (c) Canevet, D.; Gallego, M.; Isla, H.; de Juan, A.; Perez, E. M.; Martin, N. J. Am. Chem. Soc. 2011, 133, 3184.
      (d) Grimm, B.; Santos, J.; Illescas, B. M.; Muñ oz, A.; Guldi, D. M.; Martín, N. J. Am. Chem. Soc. 2010, 132, 17387.
      (e) Isla, H.; Gallego, M.; Pérez, E. M.; Viruela, R.; Ortí, E.; Martín, N. J. Am. Chem. Soc. 2010, 132, 1772.
      (f) Pérez, E. M.; Sánchez, L.; Fernández, G.; Martín, N. J. Am. Chem. Soc. 2006, 128, 7172.
      (g) Komatsu, N. Org. Biomol. Chem. 2003, 1, 204-209.

    16. [16]

      (a) Sanchez-Molina, I.; Grimm, B.; Krick Calderon, R. M.; Claessens, C. G.; Guldi, D. M.; Torres, T. J. Am. Chem. Soc. 2013, 135, 10503.
      (b) Shimizu, S.; Nakano, S.; Hosoya, T.; Kobayashi, N. Chem. Commun. 2011, 47, 316.

    17. [17]

      Becker, H.; Javahery, G.; Petrie, S.; Cheng, P. C.; Schwarz, H.; Scott, L. T.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 11636.  doi: 10.1021/ja00077a088

    18. [18]

      Nestoros, E.; Stuparu, M. C. Chem. Commun. 2018, 54, 6503.  doi: 10.1039/C8CC02179A

    19. [19]

      Mizyed, S.; Georghiou, P. E.; Bancu, M.; Cuadra, B.; Rai, A. K.; Cheng, P.; Scott, L. T. J. Am. Chem. Soc. 2001, 123, 12770.  doi: 10.1021/ja016761z

    20. [20]

      Dawe, L. N.; AlHujran, T. A.; Tran, H. A.; Mercer, J. I.; Jackson, E. A.; Scott, L. T.; Georghiou, P. E. Chem. Commun. 2012, 48, 5563.  doi: 10.1039/c2cc30652b

    21. [21]

      Abeyratne Kuragama, P. L.; Fronczek, F. R.; Sygula, A. Org. Lett. 2015, 17, 5292.  doi: 10.1021/acs.orglett.5b02666

    22. [22]

      Yanney, M.; Sygula, A. Tetrahedron Lett. 2013, 54, 2604.  doi: 10.1016/j.tetlet.2013.03.009

    23. [23]

      Alvarez, C. M.; Aullon, G.; Barbero, H.; Garcia-Escudero, L. A.; Martinez-Perez, C.; Martin-Alvarez, J. M.; Miguel, D. Org. Lett. 2015, 17, 2578.  doi: 10.1021/acs.orglett.5b01161

    24. [24]

      Alvarez, C. M.; Barbero, H.; Ferrero, S.; Miguel, D. J. Org. Chem. 2016, 81, 6081.  doi: 10.1021/acs.joc.6b00454

    25. [25]

      (a) Huang, F.; Wang, G.; Ma, L.; Wang, Y.; Chen, X.; Che, Y.; Jiang, H. J. Org. Chem. 2017, 82, 12106.
      (b) Yu, C.; Ma, L.; He, J.; Xiang, J.; Deng, X.; Wang, Y.; Chen, X.; Jiang, H. J. Am. Chem. Soc. 2016, 138, 15849.
      (c) Wang, G.; Xiao, H.; He, J.; Xiang, J.; Wang, Y.; Chen, X.; Che, Y.; Jiang, H. J. Org. Chem. 2016, 81, 3364.
      (d) Li, Q.; Huang, F.; Fan, Y.; Wang, Y.; Li, J.; He, Y.; Jiang, H. Eur. J. Inorg. Chem. 2014, 2014, 3235.

    26. [26]

      (a) Li, M.; Chen, L.-J.; Cai, Y.; Luo, Q.; Li, W.; Yang, H.-B.; Tian, H.; Zhu, W.-H. Chem 2019, 5, 634.
      (b) Zheng, W.; Wang, W.; Jiang, S. T.; Yang, G.; Li, Z.; Wang, X. Q.; Yin, G. Q.; Zhang, Y.; Tan, H.; Li, X.; Ding, H.; Chen, G.; Yang, H. B. J. Am. Chem. Soc. 2019, 141, 583.
      (c) Gao, W.-X.; Fan, Q.-J.; Lin, Y.-J.; Jin, G.-X. Chin. J. Chem. 2018, 36, 594.
      (d) Zhou, J.; Zhang, Y.; Yu, G.; Crawley, M. R.; Fulong, C. R. P.; Friedman, A. E.; Sengupta, S.; Sun, J.; Li, Q.; Huang, F.; Cook, T. R. J. Am. Chem. Soc. 2018, 140, 7730.
      (e) Liu, C. L.; Zhang, R. L.; Lin, C. S.; Zhou, L. P.; Cai, L. X.; Kong, J. T.; Yang, S. Q.; Han, K. L.; Sun, Q. F. J. Am. Chem. Soc. 2017, 139, 12474.

    27. [27]

      Jiang, H.; Li, Q.; Wang, G. Chin. J. Org. Chem. 2018, 38, 1065.  doi: 10.6023/cjoc201711013

    28. [28]

      Huang, F.; Ma, L.; Che, Y.; Jiang, H.; Chen, X.; Wang, Y. J. Org. Chem. 2018, 83, 733.  doi: 10.1021/acs.joc.7b02709

    29. [29]

      Sun, W.; Wang, Y.; Ma, L.; Zheng, L.; Fang, W.; Chen, X.; Jiang, H. J. Org. Chem. 2018, 83, 14667.  doi: 10.1021/acs.joc.8b02674

    30. [30]

      (a) Fellows, W. B.; Rice, A. M.; Williams, D. E.; Dolgopolova, E. A.; Vannucci, A. K.; Pellechia, P. J.; Smith, M. D.; Krause, J. A.; Shustova, N. B. Angew. Chem., Int. Ed. 2016, 55, 2195.
      (b) Butterfield, A. M.; Gilomen, B.; Siegel, J. S. Org. Process Res. Dev. 2012, 16, 664.

    31. [31]

      (a) Tashiro, S.; Tominaga, M.; Kusukawa, T.; Kawano, M.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Angew. Chem., Int. Ed. 2003, 42, 3267.
      (b) Tominaga, M.; Tashiro, S.; Aoyagi, M.; Fujita, M. Chem. Commun. 2002, 2038.

    32. [32]

      Schmittel, M.; He, B.; Mal, P. Org. Lett. 2008, 2513.

    33. [33]

      Garcia-Simon, C.; Garcia-Borras, M.; Gomez, L.; Parella, T.; Osuna, S.; Juanhuix, J.; Imaz, I.; Maspoch, D.; Costas, M.; Ribas, X. Nat. Commun. 2014, 5, 5557.  doi: 10.1038/ncomms6557

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(18)
  • Abstract views(1836)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return