Citation: Liu Ruiting, Li Zhen, Wang Shengke, Zhou Xigeng. Pd(OAc)2/CuI-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3215-3222. doi: 10.6023/cjoc201904032 shu

Pd(OAc)2/CuI-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles

  • Corresponding author: Zhou Xigeng, xgzhou@fudan.edu.cn
  • Received Date: 12 April 2019
    Revised Date: 18 June 2019
    Available Online: 2 November 2019

    Fund Project: the National Natural Science Foundation of China 21732007the National Natural Science Foundation of China 21572034the National Natural Science Foundation of China 21871054Project supported by the National Natural Science Foundation of China (Nos. 21572034, 21732007, 21871054)

Figures(5)

  • Tandem Pd(OAc)2/CuI catalyzed coupling/cyclization/chalcogenylation reaction of gem-dibromovinylanilines with boronic acids and dichalcogenides has been developed, which provides a new synthetic approach to 3-sulfenyl-and 3-selenylindoles. Various functional groups such as methoxyl, halides and trifluoromethyl groups in the substrates are tolerated.
  • 加载中
    1. [1]

      (a) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390.
      (b) Sundberg, R. L. Indoles, Academic Press, London, 1996.
      (c) Katritzky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic Chemistry, Pergamon, Oxford, 2000.
      (d) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045.
      (e) Kochanowska-Karamyan, A. J.; Harmann, M. T. Chem. Rev. 2010, 110, 4489.
      (f) Shiri, M. Chem. Rev. 2012, 112, 3508.

    2. [2]

      (a) Gao, S. S.; Li, X. M.; Williams, K.; Proksch, P.; Ji, N. Y.; Wang, B. G. J. Nat. Prod. 2016, 79, 2066.
      (b) Cheng, G. G.; Li, D.; Hou, B.; Li, X.-N.; Liu, L.; Chen, Y. Y.; Lunga, P. K.; Khan, A.; Liu, Y. P.; Zuo, Z. L.; Luo, X. D. J. Nat. Prod. 2016, 79, 2158.
      (c) Sim, D. S. Y.; Teoh, W. Y.; Sim, K. S.; Lim, S. H.; Thomas, N. F.; Low, Y. Y.; Kam, T. S. J. Nat. Prod. 2016, 79, 1048.
      (d) Wang, Z. R.; Hu, J. H.; Yang, X. P.; Feng, X.; Li, X. S.; Huang, L.; Chan, A. S. C. J. Med. Chem. 2018, 61, 1871.

    3. [3]

      (a) Ragno, R.; Coluccia, A.; Regina, G. L.; Martino, G. D.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 3172.
      (b) Famiglini, V.; La Regina, G.; Coluccia, A.; Pelliccia, S.; Brancale, A.; Maga, G.; Crespan, E.; Badia, R.; Riveira-Muñoz, E.; Esté, J. A.; Ferretti, R.; Cirilli, R.; Zamperini, C.; Botta, M.; Schols, D.; Limongelli, V.; Agostino, B.; Novellino, E.; Silvestri R. J. Med. Chem. 2014, 57, 9945.
      (c) Famiglini, V.; La Regina, G.; Coluccia, A.; Masci, D.; Brancale, A.; Badia, R.; Riveira-Muñoz, E.; Esté, J. A. Crespan, E.; Brambilla, A.; Maga, G.; Catalano, M.; Limatola, C.; Formica, F. R.; Cirilli, R.; Novellino, E.; Silvestri, R. J. Med. Chem. 2017, 60, 6528.
      (d) Li, X; Gao, P.; Huang, B. S.; Zhou, Z. X.; Yu, Z.; Yuan, Z.; Liu, H. Q.; Pannecouque, C.; Daelemans, D.; De Clercq, E. Eur. J. Med. Chem. 2017, 126, 190.
      (e) Duchowicz1, P. R.; BaceloSilvina, D. E.; Fioressi, S. E.; Palermo, V.; Ibezim, N. E.; Romanelli, G. P. Med. Chem. Res. 2018, 27, 420.

    4. [4]

      (a) Regina, G. L.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; Martino, G. D.; Matesanz, R.; Díaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.
      (b) La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Verrico, A.; Miele, A.; Monti, L.; Nalli, M.; Alfonsi, R.; Di Marcotullio, L.; Gulino, A.; Ricci, B.; Soriani, A.; Santoni, A.; Caraglia, M.; Porto, S.; Da Pozzo, E.; Martini, C.; Brancale, A.; Marinelli, L.; Novellino, E.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Bigogno, C.; Dondio, G.; Hamel, E.; Lavia, P.; Silvestri, R. J. Med. Chem. 2015, 58, 5789.
      (c) Sidhu, J. S.; Singla, R.; Mayank, Jaitak. V. Anti-Cancer Agents Med. Chem. 2016, 16, 160.

    5. [5]

      Ramakrishna, V. S. N.; Shirsath, V. S.; Kambhampati, R. S.; Vishwakarma, S.; Kandikere, N. V.; Kota, S.; Jasti. V. WO 2007020653, 2007.

    6. [6]

      Hu, X.; Compton, J. R.; AbdulHameed, M. D. M.; Marchand, C. L.; Robertson, K. L.; Leary, D. H.; Jadhav, A.; Hershfield, J. R.; Wallqvist, A.; Friedlander, A. M.; Legler, P. M. J. Med. Chem. 2013, 56, 5275.  doi: 10.1021/jm4001242

    7. [7]

      (a) Unangst, P. C.; Connor, D. T.; Stabler, S. R.; Weikert, R. J.; Carethers, M. E.; Kennedy, J. A.; Thueson, D. O.; Chestnut, J. C.; Adolphson, R. L.; Conroy, M. C. J. Med. Chem. 1989, 32, 1360.
      (b) Armer, R. E.; Wynne, G. M. WO 2008012511, 2008.

    8. [8]

      Nuth, M.; Guan, H.; Zhukovskaya, N.; Saw, Y. L.; Ricciardi, R. P. J. Med. Chem. 2013, 56, 3235.  doi: 10.1021/jm301735k

    9. [9]

      (a) Hamel, P. J. Org. Chem. 2002, 67, 2854.
      (b) Vedejs, E.; Little, J. D. J. Org. Chem. 2004, 69, 1794.
      (c) Li, J. X.; An, Y. N.; Li, J. W.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Org. Chem. Front. 2017, 4, 1590.

    10. [10]

      (a) Montevecchi, P. C.; Navacchia, M. L.; Spagnolo, P. Eur. J. Org. Chem. 1998, 6, 1219.
      (b) Chen, Y.; Cho, C. H.; Larock, R. C. Org. Lett. 2009, 11, 173.
      (c) Guo, Y. J.; Tang, R. Y.; Li, J. H.; Zhong, P.; Zhang, X. G. Adv. Synth. Catal. 2009, 351, 2615.
      (d) Kumar, P. P.; Reddy, Y. D.; Reddy, C. V. R.; Devi, B. R.; Dubey, P. K. J. Sulfur Chem. 2014, 35, 356.
      (e) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y. B.; Zha, Z. G.; Wang, Z. Y. Green Chem. 2016, 18, 2609.
      (f) Li, J.; Cai, Z. J.; Wang, S. Y.; Ji, S. J. Org. Biomol. Chem. 2016, 14, 9384.
      (g) Guo, W.; Tan, W.; Zhao, M. M.; Tao, K. L.; Zheng, L. Y.; Wu, Y. Q.; Chen, D. L.; Fan, X. L. RSC Adv. 2017, 7, 37739.
      (h) Liao, H. X.; Yang, Y.; Li, W. M.; Shen, C.; Zhang, P. F. Curr. Org. Chem. 2017, 21, 2509.
      (i) Šiaučiulis, M.; Sapmaz, S.; PulisA, P.; Procter, D. J. Chem. Sci. 2018, 9, 754.
      (j) Li, J. X.; Li, C. S.; Yang, S. R.; An, Y. N.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 2875.
      (k) Lavekar, A. G.; Equbal, D.; Saima; Sinha, A. K. Adv. Synth. Catal. 2018, 360, 180.

    11. [11]

      Li, Z.; Hong, L. C.; Liu, R. T.; Shen, J. Z.; Zhou, X. G. Tetrahedron Lett. 2011, 52, 1343.  doi: 10.1016/j.tetlet.2011.01.052

    12. [12]

      (a) Kumar, D. R.; Satyanarayana, G. Org. Lett. 2015, 17, 5894.
      (b) Liu, H.; Xi, F. G.; Sun, W.; Yang, N. N.; Gao, E. Q. Inorg. Chem. 2016, 55, 5753.
      (c) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
      (d) Korvorapun, K.; Kaplaneris, N.; Rogge, T.; Warratz, S.; Stückl, A. C.; Ackermann, L. ACS Catal. 2018, 8, 886.

    13. [13]

      (a) Fang, Y. Q.; Lautens, M. Org. Lett. 2005, 7, 3549.
      (b) Fang, Y. Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.
      (c) Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054.
      (d) Arthuis, M.; Pontikis, R.; Florent, J. C. Org. Lett. 2009, 11, 4608.

    14. [14]

      Li, Z.; Hong, J. Q.; Zhou, X. G. Tetrahedron 2011, 67, 3690.  doi: 10.1016/j.tet.2011.03.067

    15. [15]

      CCDC 861518 for 4f contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/datarequest/cif.

    16. [16]

      (a) Blanco, G. A.; Baumgartner, M. T. Tetrahedron Lett. 2011, 52, 7061.
      (b) Yan, G. b.; Borah, A. J.; Wang, L. G. Org. Biomol. Chem. 2014, 12, 9557.
      (c) Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131.

    17. [17]

      (a) Taniguchi, N. J. Org. Chem. 2006, 71, 7874.
      (b) Stein, A.; Alves, D.; da Rocha, J.; Nogueira, C.; Zeni, G. Org. Lett. 2008, 10, 4983.
      (c) Taniguchi, N. Tetrahedron 2009, 65, 2782.
      (d) Wu, W.; Ding, Y. C.; Xie, P.; Tang, Q. J.; Pittman Jr. C. U.; Zhou, A. H. Tetrahedron 2017, 73, 2151.

    18. [18]

      (a) Ali, M. H.; McDermott, M. Tetrahedron Lett. 2002, 43, 6271.
      (b) Kabalka, G. W.; Reddy, M. S.; Yao, M. L. Tetrahedron Lett. 2009, 50, 7340.
      (c) Singh, D.; Deobald, A. M.; Camargo, L. S.; Tabarelli, G.; Rodrigues, O. D.; Braga, A. L. Org. Lett. 2010, 12, 3288.

  • 加载中
    1. [1]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    2. [2]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    3. [3]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    4. [4]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    8. [8]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    9. [9]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    12. [12]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    13. [13]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    14. [14]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    15. [15]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    16. [16]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    20. [20]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

Metrics
  • PDF Downloads(6)
  • Abstract views(1158)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return