Citation: Liang Jie, Ma Huifang, Ablajan Keyume. High-Selective One-Pot Synthesis of Spirocyclopropane Pyrazolones Promoted by 4-Dimethylaminopyridine[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3169-3175. doi: 10.6023/cjoc201904028 shu

High-Selective One-Pot Synthesis of Spirocyclopropane Pyrazolones Promoted by 4-Dimethylaminopyridine

  • Corresponding author: Ablajan Keyume, ablajan209@hotmail.com
  • Received Date: 10 April 2019
    Revised Date: 11 June 2019
    Available Online: 9 November 2019

    Fund Project: the National Natural Science Foundation of Chin 21462041the National Natural Science Foundation of Chin 21961038Project supported by the National Natural Science Foundation of China (Nos. 21961038, 21462041)

Figures(4)

  • A 4-dimethylaminopyridine (DMAP)-promoted high stereoselectivity method for the synthesis of polysubstituted spiropropane pyrazolone was developed. A series of target compounds were synthesized from using pyrazolone, aromatic aldehyde and bromoacetate as raw materials, and DMAP as a base with high yield via three-component one-pot reaction. This reaction has the advantages of simple operation, high yield and good diastereotopic selectivity. In addition, this synthetic method is of great value for the study of spiropropane.
  • 加载中
    1. [1]

      (a) Kinder, F. R. J.; Wang, R.-M.; Bauta, W. E.; Bair, K. W. M. Bioorg. Med. Chem. Lett. 1996, 6, 1029.
      (b) Wessjohann, L. A.; Brandt, W. Chem. Rev. 2003, 103, 1625.
      (c) Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev. 2012, 41, 4631.
      (d) Djerassi, C.; Doss, G. A. New J. Chem. 1990, 14, 713.
      (e) Donaldson, W. A. Tetrahedron 2001, 57, 8589.
      (f) Faust, R. Angew. Chem. 2001, 113, 2312.
      (g) Qian, P.; Du, B. G.; Song, R. C.; Wu, X. D.; Mei, H. B.; Han, J. L.; Pan, Y. J. Org. Chem. 2016, 81, 6546.

    2. [2]

      Sampson, P. B.; Liu, Y.; Patel, N. K.; Feher, M.; Forrest, B. J. Med. Chem. 2015, 58, 130.  doi: 10.1021/jm500537u

    3. [3]

      Sahlberg, C.; Engelhardt, P. J. Med. Chem. 1999, 42, 4150.  doi: 10.1021/jm990095j

    4. [4]

      McMorris, T. C.; Kelner, M. J.; Wang, W.; Yu, J.; Estes, L. A.; Taetle, R. J. Nat. Prod. 1996, 59, 896.  doi: 10.1021/np960450y

    5. [5]

      (a) Cordero, F. M.; Pisaneschi, F.; Salvati, M.; Paschetta, V.; Ollivier, J.; Salaun, J.; Brandi, A. J. Org. Chem. 2003, 68, 3271.
      (b) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.

    6. [6]

      (a) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
      (b) Kulinkovich, O. G.; Meijere, D. A. Chem. Rev. 2000, 100, 2789.
      (c) Mukherjee, P.; Das, A. R. J. Org. Chem. 2017, 82, 2794.

    7. [7]

      Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem. Int. Ed. 2004, 43, 4641.  doi: 10.1002/anie.200460234

    8. [8]

      (a) Sun, X. L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937.
      (b) Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 13410.
      (c) Wang, J.; Liu, X. H.; Dong, S. X.; Lin, L. L.; Feng, X. M. J. Org. Chem. 2013, 78, 6322.
      (d) Guo, J.; Liu, Y. B.; Li, X. Q.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Sci. 2016, 7, 2717.

    9. [9]

      (a) Sawada, T.; Nakada, M. Org. Lett. 2013, 15, 1004.
      (b) Lindsay; V. N. G.; Nicolas, C.; Charette, A. B. J. Am. Chem. Soc. 2011, 133, 8972.
      (c) Xu, X.; Zhu, S.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem. 2013, 125, 12073.
      (d) Xu, Z.-H.; Zhu, S.-N.; Sun, X.-L.; Tang, Y.; Dai, L.-X. Chem. Commun. 2007, 38, 1960.

    10. [10]

      (a) Arai, S.; Nakayama, K.; Hatano, K.; Shioiri, T. J. Org. Chem. 1998, 63, 9572.
      (b) Miyagawa, T.; Tatenuma, T.; Tadokoro, M.; Satoh, T. Tetrahedron, 2008, 64, 5279.

    11. [11]

      (a) Newcomb, E. T.; Ferreira, E. M. Org. Lett. 2013, 15, 1772.
      (b) Robinson, A.; Aggarwal, V. K. Angew. Chem. 2010, 122, 6823.

    12. [12]

      Yuan, Z.-B.; Fang, X.-X.; Li, X.-Y.; Wu, J.; Yao, H.-Q.; Lin, A.-J. J. Org. Chem. 2015, 80, 1112.

    13. [13]

      Pyne, S. G.; Dong, Z.; Skelton, B. W.; White, A. H. J. Org. Chem. 1997, 62, 2337.  doi: 10.1021/jo962216i

    14. [14]

      Hanessian, S.; Andreotti, D.; Gomtsyan, A. J. Am. Chem. Soc. 1995, 117, 10393.  doi: 10.1021/ja00146a029

    15. [15]

      Kimber, M. C.; Taylor, D. K. J. Org. Chem. 2002, 67, 3142.  doi: 10.1021/jo0110496

    16. [16]

      Avery, T. D.; Jenkins, N. F.; Kimber, M. C.; Lupton, D. W.; Taylor, D. K. Chem. Commun. 2002, 33, 28.

    17. [17]

      Wang, Q.; Song, X. K.; Chen, J.; Yan, C. G. J. Comb. Chem. 2009, 11, 1007.  doi: 10.1021/cc900005v

    18. [18]

      Ošeka, M.; Noole, A.; Žari, S.; Öeren, M.; Järving, I.; Lopp, M.; Kanger, T. Eur. J. Org. Chem. 2014, 17, 3599.

    19. [19]

      Ren, Z. J.; Cao, W. G.; Tong, W. Q.; Chen, J.; Deng, H. M.; Wu, D. Y. Synth. Commun. 2008, 38, 2200.  doi: 10.1080/00397910802029406

    20. [20]

      Ren, Z. J.; Cao, W. G.; Chen, J.; Chen, Y. L.; Deng, H. M.; Shao, M.; Wu, D. Y. Tetrahedron 2008, 64, 5156.  doi: 10.1016/j.tet.2008.03.049

    21. [21]

      Li, J. H.; Feng, T. F.; Du, D. M. J. Org. Chem. 2015, 80, 11369.  doi: 10.1021/acs.joc.5b01940

    22. [22]

      (a) Ablajan, K.; Zeynepgul, E.; Wang, L. J.; Feng, J. Tetrahedron 2014, 70, 3976.
      (b) Wang, L. J.; Ablajan, K.; Feng, J. Ultrason. Sonochem. 2015, 22, 113.
      (c) Li, W. B.; Reyhangul, R.; Ablajan, K.; Zulpiya, G. Tetrahedron 2017, 73, 164.

    23. [23]

      (a) Khan, A.; Lal, M.; Sidick Basha, R. Synthesis 2013, 45, 406.
      (b) Wang, Q.-F.; Hou, H.; Hui, L.; Yan, C.-G. J. Org. Chem. 2009, 74, 7403.
      (c) Chuang, C.-P.; Chen, K.-P. Tetrahedron 2012, 68, 1401.

  • 加载中
    1. [1]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    2. [2]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    3. [3]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    4. [4]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    5. [5]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    6. [6]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    7. [7]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    8. [8]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    9. [9]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    10. [10]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    11. [11]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    14. [14]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    15. [15]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    16. [16]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    17. [17]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    18. [18]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

Metrics
  • PDF Downloads(13)
  • Abstract views(831)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return