Citation: Mao Pu, Zhu Junliang, Yuan Jinwei, Yang Liangru, Xiao Yongmei, Zhang Changsen. Recent Advances on the Catalytic Functionalization of Quinoxalin- 2(1H)-ones via C-H Bond Activation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1529-1547. doi: 10.6023/cjoc201904025 shu

Recent Advances on the Catalytic Functionalization of Quinoxalin- 2(1H)-ones via C-H Bond Activation

  • Corresponding author: Yuan Jinwei, yuanjinweigs@126.com
  • Received Date: 10 April 2019
    Revised Date: 24 April 2019
    Available Online: 6 June 2019

    Fund Project: the Project of Youth Backbone Teachers of Henan University of Technology 2016003the Department of Henan Province Natural Science and Technology Foundation 172102210225the Program for Innovative Research Team from Zhengzhou 131PCXTD605Project supported by the Department of Henan Province Natural Science and Technology Foundation (Nos.172102210225 and 182102310675), the Natural Science Foundation in Henan Province Department of Education (No.17A150005), the Program for Innovative Research Team from Zhengzhou (No. 131PCXTD605), and the Project of Youth Backbone Teachers of Henan University of Technology (No.2016003)the Department of Henan Province Natural Science and Technology Foundation 182102310675the Natural Science Foundation in Henan Province Department of Education 17A150005

Figures(50)

  • Quinoxalin-2(1H)-ones are very important N-heterocyclic moieties found in natural products and pharmaceuticals, and exhibit an amazingly wide spectrum of biological properties. Numerous efforts have been devoted to the development of efficient approaches for the C-H bond activation and functionalization of quinoxalin-2(1H)-ones in recent years, including alkylation, benzylation, acylation, arylation, amination, amidation, phosphonation, and fluoroalkylation. The recent advances in this area are summarized and their reaction mechanisms are discussed.
  • 加载中
    1. [1]

      (a) Shi, L.; Zhou, H.; Wu, J.; Li, X. Mini-Rev. Org. Chem. 2015, 12, 96.
      (b) Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Prudêncio, C.; Noronha, J. P.; Vieira, M. Eur. J. Med. Chem. 2015, 97, 664.
      (c) Willardsen, J. A.; Dudley, D. A.; Cody, W. L.; Chi, L.; McClanahan, T. B.; Mertz, T. E.; Potoczak, R. E.; Narasimhan, L. S.; Holland, D. R.; Rapundalo, S. T.; Edmunds, J. J. J. Med. Chem. 2004, 47, 4089.

    2. [2]

      (a) Wagle, S.; Adhikari, A. V.; Kumari, N. S. Ind. J. Chem. 2008, 47, 439.
      (b) Badran, M. M.; Abouzid, K. A. M.; Hussein, M. H. M. Arch. Pharm. Res. 2003, 26, 107.
      (c) TenBrink, R. E.; Im, W. B.; Sethy, V. H.; Tang, A. H.; Carter, D. B. J. Med. Chem. 1994, 37, 758.

    3. [3]

      (a) Poulsen, T. B.; Jø rgensen, K. A. Chem. Rev. 2008, 108, 2903.
      (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.

    4. [4]

      (a) Chen, X.; Li, J. J.; Hao, X. S.; Goodhu, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 78.
      (b) Chen, X.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 12634.
      (c) Zhang, Y.; Feng, J.; Li, C. J. J. Am. Chem. Soc. 2008, 130, 2900.
      (d) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
      (e) Guo, S.; Kumar, P. S.; Yang, M. Adv. Synth. Catal. 2017, 359, 2.
      (f) Jafarpour, F.; Darvishmolla, M. Org. Biomol. Chem. 2018, 16, 3396.

    5. [5]

      Nikam, S. S.; Sahasrabudhe, A. D.; Shastri, R. K.; Ramanathan, S. Synthesis 1983, 145.
       

    6. [6]

      (a) Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Franzblau, S. G.; Petukhov, P. A. J. Med. Chem. 2008, 51, 1999.
      (b) Wang, A.; Li, X.; Chen, C.; Wu, H.; Qi, Z.; Hu, C.; Yu, K.; Wu, J.; Liu, J.; Liu, X.; Hu, Z.; Wang, W.; Wang, W.; Wang, W.; Wang, L.; Wang, B.; Liu, Q.; Li, L.; Ge, J.; Ren, T.; Zhang, S.; Xia, R.; Liu, J.; Liu, Q. J. Med. Chem. 2017, 60, 8407.
      (c) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207.

    7. [7]

      (a) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.
      (b) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
      (c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
      (d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    8. [8]

      Liu, S.; Huang, Y.; Qing, F. L.; Xu, X. H. Org. Lett. 2018, 20, 5497.  doi: 10.1021/acs.orglett.8b02451

    9. [9]

      (a) Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.
      (b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
      (c) May, E. L.; Jacobson, A. E.; Mattson, M. V.; Traynor, J. R.; Woods, J. H.; Harris, L. S.; Bowman, E. R.; Aceto, M. D. J. Med. Chem. 2000, 43, 5030.
      (d) Fleming, F. F.; Zhang, Z. Y. Tetrahedron 2005, 61, 747.
      (e) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170.

    10. [10]

      Yang, L.; Gao, P.; Duan, X. H.; Gu, Y. R.; Guo, L. N. Org. Lett. 2018, 20, 1034.  doi: 10.1021/acs.orglett.7b03984

    11. [11]

      (a) Martinez, C.; Alvarez R.; Aurrecoechea, J. M. Org. Lett. 2009, 11, 1083.
      (b) Ackermann, L.; Lygin A. V.; Hofmann, N. Angew Chem., Int. Ed. 2011, 123, 6503.
      (c) Zhou, B.; Yang Y.; Li, Y. Chem. Commun. 2012, 48, 5163.
      (d) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew Chem., Int. Ed. 2009, 48, 5094.

    12. [12]

      Yuan, J.; Fu, J.; Yin, J.; Dong, Z.; Xiao, Y.; Mao, P.; Qu, L. Org. Chem. Front. 2018, 5, 2820.  doi: 10.1039/C8QO00731D

    13. [13]

      (a) Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jø rgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784.
      (b) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
      (c) Zhang, L.; Yi, H.; Wang, J.; Lei, A. Green Chem. 2016, 18, 5122.
      (d) Shi, Q.; Li, P.; Zhu, X.; Wang, L. Green Chem. 2016, 18, 4916.
      (e) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.

    14. [14]

      Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.  doi: 10.1021/acssuschemeng.8b04652

    15. [15]

      (a) Zhou, W.; Qian, P.; Zhao, J.; Fang, H.; Han, J.; Pan, Y. Org. Lett. 2015, 17, 1160.
      (b) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037.
      (c) Zhang, S. Y.; Tu, Y. Q.; Fan, C. A.; Zhang, F. M.; Shi, L. Angew. Chem., Int. Ed. 2009, 48, 8761.
      (d) Hu, W.; Sun, S.; Cheng, J. J. Org. Chem. 2016, 81, 4399.
      (e) Meng, Y.; Guo, L. N.; Wang, H.; Duan, X. H. Chem. Commun. 2013, 49, 7540.

    16. [16]

      Fu, J.; Yuan, J.; Zhang, Y.; Xiao, Y.; Mao, P.; Diao, X.; Qu, L Org. Chem. Front. 2018, 5, 3382.  doi: 10.1039/C8QO00979A

    17. [17]

      (a) Bar, G.; Parsons, A. F. Chem. Soc. Rev. 2003, 32, 251.
      (b) Yamada, K.; Tomioka, K. Chem. Rev. 2008, 108, 2874.
      (c) Slater, K.; Friestad, G. K. J. Org. Chem. 2015, 80, 6432.

    18. [18]

      Zheng, D.; Studer, A. Org. Lett. 2019, 21, 325.  doi: 10.1021/acs.orglett.8b03849

    19. [19]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Nie, J.; Guo, H. C.; Cahard, D.; Ma, J. A. Chem. Rev. 2011, 111, 455.

    20. [20]

      Wang, L.; Zhang, Y.; Li, F.; Hao, X.; Zhang, H. Y.; Zhao, J. Adv. Synth. Catal. 2018, 360, 3969.  doi: 10.1002/adsc.v360.20

    21. [21]

      (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
      (b) Xu, Y.; Aoki, J.; Shimizu, K.; Umezu-Goto, M.; Hama, K.; Takanezawa, Y.; Yu, S.; Mills, G. B.; Arai, H.; Qian, L.; Prestwich, G. D. J. Med. Chem. 2005, 48, 3319.
      (c) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.

    22. [22]

      Hong, G.; Yuan, J.; Fu, J.; Pan, G.; Pan, Z.; Wang, Z.; Yang, L.; Xiao, Y.; Mao, P.; Zhang, X. Org. Chem. Front. 2019, 6, 1173.  doi: 10.1039/C9QO00105K

    23. [23]

      (a) Lawrence, D. S.; Copper, J. E.; Smith, C. D. J. Med. Chem. 2001, 44, 594.
      (b) Wu, B.; Yang, Y.; Qin, X.; Zhang, S.; Jing, C.; Zhu, C.; Ma, B. ChemMedChem 2013, 8, 1913.
      (c) Khattab, S. N.; Abdel Moneim, S. A. H.; Bekhit, A. A.; El Massry, A. M.; Hassan, S. Y.; El-Faham, A.; Ali Ahmed, H. E.; Amer, A. Eur. J. Med. Chem. 2015, 93, 308.
      (d) Kobayashi, Y.; Suzuki, Y.; Ogata, T.; Kimachi, T.; Takemoto, Y. Tetrahedron Lett. 2014, 55, 3299.

    24. [24]

      Hu, L.; Yuan, J.; Fu, J.; Zhang, T.; Gao, L.; Xiao, Y.; Mao, P.; Qu, L. Eur. J. Org. Chem. 2018, 2018, 4113.  doi: 10.1002/ejoc.201800697

    25. [25]

      (a) Piras, S.; Loriga, M.; Carta, A.; Paglietti, G.; Costi, M. P.; Ferrari, S. J. Heterocycl. Chem. 2006, 43, 541.
      (b) Kucybała, Z.; Pączkowski, J. J. Photochem. Photobiol. A 1999, 128, 135.
      (c) Honda, H.; Shibusawa, Y.; Taniguchi, J.; Matsuda, H.; Kondod, M.; Kumasaka, K.; Miwa, T.; Notoya, Y.; Shindo, H. Vascul. Pharmacol. 2005, 42, 163.
      d) Azuma, K.; Suzuki, S.; Uchiyama, S.; Kajiro, T.; Santa, T.; Imai, K. Photochem. Photobiol. Sci. 2003, 2, 443.

    26. [26]

      (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
      (b) Rodriguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.

    27. [27]

      Zeng, X.; Liu, C.; Wang, X.; Zhang, J.; Wang, X.; Hu, Y. Org. Biomol. Chem. 2017, 15, 8929.  doi: 10.1039/C7OB02187A

    28. [28]

      (a) Chen, J.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. Org. Biomol. Chem. 2015, 13, 11561.
      (b) Chen, X.; Cui, X.; Wu, Y. Org. Lett. 2016, 18, 2411.
      (c) Liu, J. Q.; Shen, X. Y.; Liu, Z. H.; Wang, X. S. Org. Biomol. Chem. 2017, 15, 6314.
      (d) Jafarpour, F.; Abbasnia, M. J. Org. Chem. 2016, 81, 11982.

    29. [29]

      Yuan, J. W.; Fu, J. H.; Liu, S. N.; Xiao, Y. M.; Mao, P.; Qu, L. B. Org. Biomol. Chem. 2018, 16, 3203.  doi: 10.1039/C8OB00206A

    30. [30]

      (a) Gao, Y.; Lu, W.; Liu, P.; Sun, P.; J. Org. Chem. 2016, 81, 2482.
      (b) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.

    31. [31]

      Xie, L. Y.; Peng, S.; Fan, T. G.; Liu, Y. F.; Sun, M.; Jiang, L. L.; Wang, X. X.; Cao, Z.; He, W. M. Sci. China Chem. 2019, 62, 460.  doi: 10.1007/s11426-018-9446-1

    32. [32]

      (a) Myers, M. R.; He, W.; Hanney, B.; Setzer, N.; Maguire, M. P.; Zulli, A.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Spada, A. P. Bioorg. Med. Chem. Lett. 2003, 13, 3091.
      (b) He, W.; Myers, M. R.; Hanney, B.; Spada, A. P.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, M. H. Bioorg. Med. Chem. Lett. 2003, 13, 3097.
      (c) Aoki, K.; Koseki, J.; Takeda, S.; Aburada, M.; Miyamoto, K. Chem. Pharm. Bull. 2007, 55, 922.

    33. [33]

      (a) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.
      (b) Lei, F.; Chen, Y. J.; Sui, Y.; Liu, L.; Wang, D. Synlett 2003, 1160.

    34. [34]

      Han, Y. Y.; Wu, Z. J.; Zhang, X. M.; Yuan, W. C. Tetrahedron Lett. 2010, 51, 2023.  doi: 10.1016/j.tetlet.2010.02.031

    35. [35]

      (a) Hussain, S.; Pareen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.
      (b) Yin, K.; Zhang, R. Org. Lett. 2017, 19, 1530.

    36. [36]

      (a) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
      (b) Keshari, T.; Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.
      (c) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.

    37. [37]

      Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189.  doi: 10.6023/cjoc201807014

    38. [38]

      Jung, H. I.; Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2018, 39, 1003.  doi: 10.1002/bkcs.2018.39.issue-8

    39. [39]

      Carrr, A.; Brion, J. D.; Messaoudi, S.; Alami, M. Org. Lett. 2013, 15, 5606.  doi: 10.1021/ol4028946

    40. [40]

      (a) Demir, A. S.; Reis, O.; Emrullahoglu, M. J. Org. Chem. 2003, 68, 578.
      (b) Dickschat, A.; Studer, A. Org. Lett. 2010, 12, 3972.
      (c) Yan, G. B.; Yang, M. H.; Wu, X. M. Org. Biomol. Chem. 2013, 11, 7999.
      (d) Yuan, J. W.; Yang, L. R.; Yin, Q. Y.; Mao, P.; Qu, L. B. RSC Adv. 2016, 6, 35936.

    41. [41]

      Ramesh, B.; Reddy, C. R.; Kumar, G. G.; Reddy, B. S. Tetrahedron Lett. 2018, 59, 628.  doi: 10.1016/j.tetlet.2017.12.085

    42. [42]

      (a) Surry, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
      (b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (c) Callonnec, F. L.; Fouquet, E.; Felpin, F. X. Org. Lett. 2011, 13, 2646.
      (d) Honraedt, A.; Callonnec, F. L.; Grognec, E. L.; Fernandez, V.; Felpin, F. X. J. Org. Chem. 2013, 78, 4604.

    43. [43]

      Yuan, J.; Liu, S.; Qu, L. Adv. Synth. Catal. 2017, 359, 4197.  doi: 10.1002/adsc.v359.23

    44. [44]

      Yin, K.; Zhang, R. Synlett 2018, 29, 597.  doi: 10.1055/s-0036-1589139

    45. [45]

      (a) Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 8734.
      (b) Liu, C.; Wang, Q. Org. Lett. 2016, 18, 5118.
      (c) Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 1322.
      (d) Li, P.; Cheng, G.; Zhang, H.; Xu, X.; Gao, J.; Cui, X. J. Org. Chem. 2014, 79, 8156.

    46. [46]

      Yin, K.; Zhang, R. Org. Lett. 2017, 19, 1530.  doi: 10.1021/acs.orglett.7b00310

    47. [47]

      (a) Hofmann, J.; Jasch, H.; Heinrich, M. R. J. Org. Chem. 2014, 79, 2314.
      (b) Jiang, T.; Chen, S. Y.; Zhuang, H.; Zeng, R. S.; Zou, J. P. Tetrahedron Lett. 2014, 55, 4549.

    48. [48]

      (a) Cui, J.; Jia, Q.; Feng, R.; Liu, S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
      (b) Shen, H.; Li, J.; Liu, Q.; Pan, J.; Huang, R.; Xiong, Y. J. Org. Chem. 2015, 80, 7212.
      (c) Zheng, C.; Wang, Y.; Fan, R. Org. Lett. 2015, 17, 916.

    49. [49]

      Paul, S.; Ha, J. H.; Park, G. E.; Lee, Y. R. Adv. Synth. Catal. 2017, 359, 1515.  doi: 10.1002/adsc.v359.9

    50. [50]

      Paul, S.; Khanal, H. D.; Clinton, C. D.; Kim, S. H.; Lee, Y. R. Org. Chem. Front. 2019, 6, 231.  doi: 10.1039/C8QO01250D

    51. [51]

      (a) Ghadage, R. V.; Shirote, P. J. J. Chem. Pharm. Res. 2011, 3, 260.
      (b) Galal, S. A.; Abdelsamie, A. S.; Tokuda, H.; Suzuki, N.; Lida, A.; ElHefnawi, M. M.; Ramadan, R. A.; Atta, M. H. E.; EI Diwani, H. I. Eur. J. Med. Chem. 2011, 46, 327.
      (c) Rangisetty, J. B.; Gupta, C. N. V. H. B.; Prasad, A. L.; Srinivas, P.; Sridhar, N.; Parimoo, P.; Veeranjaneyulu, A. J. Pharm. Pharmacol. 2001, 53, 1409.

    52. [52]

      Gulevskaya, A. V.; Burov, O. N.; Pozharskii, A. F.; Kletskii, M. E.; Korbukova, I. N. Tetrahedron 2008, 64, 696.  doi: 10.1016/j.tet.2007.11.029

    53. [53]

      Li, Y.; Gao, M.; Wang, L.; Cui, X. Org. Biomol. Chem. 2016, 14, 8428.  doi: 10.1039/C6OB01283C

    54. [54]

      Gupta, A.; Deshmukh, M. S.; Jain, N. J. Org. Chem. 2017, 82, 4784.  doi: 10.1021/acs.joc.7b00464

    55. [55]

      Wei, W.; Wang, L.; Bao, P.; Shao, Y.; Yue, H.; Yang, D.; Yang, X.; Zhao, X.; Wang, H. Org. Lett. 2018, 20, 7125.  doi: 10.1021/acs.orglett.8b03079

    56. [56]

      (a) Jiang, Y. Y.; Xu, K.; Zeng, C. C. Chem. Rev. 2018, 118, 4485.
      (b) Yoshida, J. I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
      (c) Wu, Z. J.; Li, S. R.; Long, H.; Xu, H. Z. Chem. Commun. 2018, 54, 4601.
      (d) Shrestha, A.; Lee, M.; Duan, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204.

    57. [57]

      (a) Xu, F.; Li, Y. J.; Huang, C.; Xu, H. C. ACS Catal. 2018, 8, 3820.
      (b) Qian, P.; Su, J. H.; Wang, Y. K.; Bi, M. X.; Zha, Z. G.; Wang, Z. Y. J. Org. Chem. 2017, 82, 6434.
      (c) Sauermann, N.; Mei, R. H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.
      (d) Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195.

    58. [58]

      Li, K. J.; Xu, K.; Liu, Y. G.; Zeng, C. C.; Sun, B. G. Adv. Synth. Catal. 2019, 361, 1033.  doi: 10.1002/adsc.v361.5

    59. [59]

      (a) Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.
      (b) Pan, C.; Jin, N.; Zhang, H.; Han, J.; Zhu, C. J. Org. Chem. 2014, 79, 9427.
      (c) Zhang, Z.; Kumar, R. K.; Li, G.; Wu, D.; Bi, X. Org. Lett. 2015, 17, 6190.
      (d) Xie, Z.; Peng, J.; Zhu, Q. Org. Chem. Front. 2016, 3, 82.
      (e) Wu, Z.; Xu, P.; Zhou, N.; Duan, Y.; Zhang, M.; Zhu, C. Chem. Commun. 2017, 53, 1045.
      (f) Kong, X.; Lin, L.; Xu, B. Adv. Synth. Catal. 2018, 360, 2801.

    60. [60]

      Yang, Q.; Yang, Z.; Tan, Y.; Zhao, J.; Sun, Q.; Zhang, H. Y.; Zhang, Y. Adv. Synth. Catal. 2019, 361, 1662.  doi: 10.1002/adsc.v361.7

    61. [61]

      (a) Dudash Jr, J.; Zhang, Y.; Moore, J. B.; Look, R.; Liang, Y.; Beavers, M. P.; Conway, B. R.; Rybczynski, P. J.; Demarest, K. T. Bioorg. Med. Chem. Lett. 2005, 15, 4790.
      (b) Fleischhauer, J.; Beckert, R.; Juttke, Y.; Hornig, D.; Gunther, W.; Birckner, E.; Grummt, U. W.; Goerls, H. Chem. Eur. J. 2009, 15, 12799.

    62. [62]

      (a) Rach, S. F.; Kühn, F. E. Chem. Rev. 2009, 109, 2061.
      (b) Zhang, Y.; Pan, L.; Zou, Y.; Xu, X.; Liu, Q. Chem. Commun. 2014, 50, 14334.
      (c) Xu, X.; Zhang, L.; Liu, X.; Pan, L.; Liu, Q. Angew. Chem., Int. Ed. 2013, 52, 9271.
      (d) Hu, Z.; Dong, J.; Men, Y.; Lin, Z.; Cai, J.; Xu, X. Angew. Chem., Int. Ed. 2017, 56, 1805.

    63. [63]

      Yuan, J.; Liu, S.; Xiao, Y.; Mao, P.; Yang, L.; Qu, L. Org. Biomol. Chem. 2019, 17, 876.  doi: 10.1039/C8OB03061H

    64. [64]

      Yuan, J.; Zhu, J.; Fu, J.; Yang, L.; Xiao, Y.; Mao, P.; Du, X.; Qu, L. Org. Chem. Front. 2019, 6, 925.  doi: 10.1039/C9QO00063A

    65. [65]

      Guo, T.; Wang, C. C.; Fu, X. H.; Liu, Y.; Zhang, P. K. Org. Biomol. Chem. 2019, 17, 3333.  doi: 10.1039/C9OB00294D

    66. [66]

      (a) Dang, Q.; Liu, Y.; Cashion, D. K.; Kasibhatla, S. R.; Jiang, T.; Taplin, F.; Jacintho, J. D.; Li, H.; Sun, Z.; Fan, Y.; Re, J. D.; Tian, F.; Li, W.; Gibson, T.; Lemus, R.; Poelje, P. D. J. Med. Chem. 2011, 54, 153.
      (b) Roush, R. F.; Nolan, E. M.; Lö hr, F.; Walsh, C. T. J. Am. Chem. Soc. 2008, 130, 3603.
      (c) Jeon, S. O.; Lee, J. Y. J. Mater. Chem. 2012, 22, 7239.

    67. [67]

      (a) Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.
      (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (c) Zhang, X.; Chen, K.; Shi, Z. J. Chem. Sci. 2014, 5, 2146.

    68. [68]

      Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Chem. Commun. 2016, 52, 2846.  doi: 10.1039/C5CC08049E

    69. [69]

      (a) Meggers, E. Chem. Commun. 2015, 51, 3290.
      (b) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426.
      (c) Ravelli, D.; Protri, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.

    70. [70]

      Kim, Y.; Kim, D. Y. Tetrahedron Lett. 2018, 59, 2443.  doi: 10.1016/j.tetlet.2018.05.034

    71. [71]

      Nishio, T. J. Org. Chem. 1984, 49, 827.  doi: 10.1021/jo00179a015

    72. [72]

      Carr r, A.; Brion, J. D.; Alami, M.; Messaoudi, S. Adv. Synth. Catal. 2014, 356, 3821.  doi: 10.1002/adsc.v356.18

    73. [73]

      Yang, Q.; Zhang, Y.; Sun, Q.; Shang, K.; Zhang, H. Y.; Zhao, J. Adv. Synth. Catal. 2018, 360, 4509.  doi: 10.1002/adsc.201801076

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    3. [3]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    4. [4]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    5. [5]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    6. [6]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    7. [7]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    8. [8]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    9. [9]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    10. [10]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    11. [11]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    12. [12]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    13. [13]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    16. [16]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    17. [17]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    18. [18]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    19. [19]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    20. [20]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

Metrics
  • PDF Downloads(13)
  • Abstract views(602)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return