Citation: Wang Yaqi, Yin Qiang, Guo Dun, Han Limin, Sun Qi, Hong Hailong, Suo Quanling. Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2898-2905. doi: 10.6023/cjoc201904021 shu

Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide

  • Corresponding author: Suo Quanling, szj@imut.edu.cn
  • Received Date: 9 April 2019
    Revised Date: 14 May 2019
    Available Online: 28 October 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21266019) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2015MS0204)the Natural Science Foundation of Inner Mongolia Autonomous Region of China 2015MS0204the National Natural Science Foundation of China 21266019

Figures(1)

  • Atom-efficient [2+2+2] cycloaddition reaction of alkynes in green solvent supercritical carbon dioxide (ScCO2) is an environmentally friendly reaction process that conforms to the principles of green chemistry. Cyclotrimerization of terminal alkynes catalyzed by Co2(CO)8 in pure ScCO2 has been studied to obtain 1, 2, 4-trisubstituted benzene derivatives with excellent selectivity. The reaction conditions for the cyclotrimerization were optimized, such as concentration of catalyst, CO2 pressure, reaction temperature and time. The solubility and phase behavior of the reaction materials and catalysts in ScCO2 medium were discussed, and the mechanism of Co2(CO)8 catalyzed cyclotrimerization of terminal alkynes was assumed. The reaction substrate was extended from C≡C (alkyne) to C≡N (nitrile), and the alkyne-nitrile cycloaddition reaction in ScCO2 was preliminary explored. Our optimized catalytic system for the cyclotrimerization of terminal alkynes exhibited wide substrate scope and high product selectivity, in which no organic co-solvent or additives were added. It provided a green synthetic method for 1, 2, 4-trisubstituted benzenes.
  • 加载中
    1. [1]

      Mykhailiuk, P. K. Org. Biomol. Chem. 2019, 17, 2839.  doi: 10.1039/C8OB02812E

    2. [2]

      Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.  doi: 10.1002/adsc.200600325

    3. [3]

      (a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. Cotrimerizations of Acetylenic Compounds, John Wiley & Sons, Inc., New Jersey, 2007, pp. 1~302.
      (b) Kotha, S.; Lahiri, K.; Sreevani, G. Synlett 2018, 29, 2342.

    4. [4]

      Zhang, N.; Wang, Q.; Shi, W. Z. Introduction to Modern Chemical Industry, China Petrochemical Press Co. Ltd, Beijing, 2013, p. 284(in Chinese).

    5. [5]

      Xue, H.; Martyn, P. Chem. Soc. Rev. 2012, 41, 1428.  doi: 10.1039/c2cs15314a

    6. [6]

      Skouta, R. Green Chem. Lett. Rev. 2009, 2, 121.  doi: 10.1080/17518250903230001

    7. [7]

    8. [8]

      (a) Chatterjee, M.; Ishizaka, T.; Kawanami, H. Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst, American Chemical Society, Washington, DC, 2015, pp. 191~250.
      (b) Ichikawa, S.; Seki, T.; Ikariya, T. Adv. Synth. Catal. 2014, 356, 2643.

    9. [9]

      (a) Wang, X.; Kawanami, H. Appl. Catal., A 2008, 349, 86.
      (b) Bourne, R. A.; Xue, H.; Martyn, P.; George, M. W. Angew. Chem., Int. Ed. 2010, 48, 5322.

    10. [10]

    11. [11]

      (a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Guo, L. L.; Han, L. M. J. Supercrit. Fluids 2014, 92, 70.
      (b) Wang, Y. L.; Suo, Q. L.; Han, L. M.; Guo, L. L.; Wang, Y.; Li, F. W. Tetrahedron 2018, 74, 1918.

    12. [12]

    13. [13]

      (a) Casimiro, T.; Montilla, F.; Garcia, S.; Avilés, T.; Raeissi, S.; Shariati, A.; Peters, C. J.; Ponte, M. N. D.; Aguiar-Ricardo, A. J. Supercrit. Fluids 2004, 31, 1.
      (b) Kazemi, S.; Belandria, V.; Janssen, N.; Richon, D.; Peters, C. J.; Kroon, M. C. J. Supercrit. Fluids 2012, 72, 320.
      (c) Long, J. J.; Cui, C. L.; Zhang, Y. Q.; Yuan, G. H. Dyes Pigm. 2015, 115, 88.

    14. [14]

      Kaganovich, V. S.; Rybinskaya, M. I. J. Organomet. Chem. 1988, 344, 383.  doi: 10.1016/0022-328X(88)80192-X

    15. [15]

      Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D. Organometallics 1999, 18, 206.  doi: 10.1021/om980545q

    16. [16]

      Wang, Y. Q.; Han, L. M.; Suo, Q. L.; Zhu, N.; Hao, J. M.; Xie, R. J. Polyhedron 2013, 54, 221.  doi: 10.1016/j.poly.2013.02.043

    17. [17]

      (a) Giuliana Gervasio, E. S. J. Organomet. Chem. 1993, 44, 203.
      (b) Cetini, G.; Gambino, O.; Rossetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8, 149.
      (c) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; Morokuma, K.; Yamazaki, H. J. Am. Chem. Soc. 1983, 105, 1907.
      (d) Peng, W.; Yi, Z.; Fan, Q. C.; Hao, F.; Xie, Y. M.; King, R. B.; Schaefer, I. H. F. Organometallics 2014, 33, 2352.
      (e) Chen, Z.; Liu, J.; Evans, A. J.; Alberch, L.; Wei, A. Chem. Mater. 2012, 26, 941.

    18. [18]

      Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952.  doi: 10.1021/ja00529a015

    19. [19]

      Pittman, C. U.; Smith, L. R. J. Organomet. Chem. 1975, 90, 203.  doi: 10.1016/S0022-328X(00)92113-2

    20. [20]

      Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N. Angew. Chem., Int. Ed. 2018, 57, 3499.  doi: 10.1002/anie.201801222

    21. [21]

      Xu, L. M.; Yu, R. C.; Wang, Y. F.; Chen, J. H.; Yang, Z. J. Org. Chem. 2014, 44, 5744.

    22. [22]

      Riache, N.; Dery, A.; Callens, E.; Poater, A.; Basset, J. M. Organometallics 2015, 34, 690.  doi: 10.1021/om500684e

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(7)
  • Abstract views(1748)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return