Citation: Wang Jun, Li Xiaocheng, Chu Hongtao, He Jinjun, Chen Zhijiao. Research Progress in the White Light-Emitting Lanthanide-Based Complex/Coordination Polymer Materials[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3399-3413. doi: 10.6023/cjoc201904016 shu

Research Progress in the White Light-Emitting Lanthanide-Based Complex/Coordination Polymer Materials

  • Corresponding author: Wang Jun, beyoundme@126.com
  • Received Date: 8 April 2019
    Revised Date: 11 July 2019
    Available Online: 24 December 2019

    Fund Project: Project supported by the Joint Funds of Science and Technology of Guizhou Province (No. [2015]7774), the Growth Project for Youth Science and Technology Talent of Education Department of Guizhou Province (No. [2016]141), the Science and Technology Project of Education Department of Heilongjiang Province (No. 12521607)the Growth Project for Youth Science and Technology Talent of Education Department of Guizhou Province [2016]141the Joint Funds of Science and Technology of Guizhou Province [2015]7774the Science and Technology Project of Education Department of Heilongjiang Province 12521607

Figures(10)

  • Color-tunable and white light-emitting lanthanide-based complex/coordination polymer materials have attracted increasing interest recently due to the exceptional luminescent and chromogenic properties. Recent advances from 2014 to 2018 on white-light-emitting lanthanide-based materials are classifiedly highlighted in light of different aggregate states and lanthanide species in the coordination assemblies. The future advances in this field are also predicted.
  • 加载中
    1. [1]

      Cui, Y.; Chen, B.; Qian, G. Coord. Chem. Rev. 2014, 273, 76.
       

    2. [2]

      Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y. Chem. Rev. 2018, 118, 8899.

    3. [3]

      Wang, M.-S.; Guo, G.-C. Chem. Commun. 2016, 52, 13194.  doi: 10.1039/C6CC03184F

    4. [4]

      Wang, Z.; Wang, Z.; Lin, B.; Hu, X.; Wei, Y.; Zhang, C.; An, B.; Wang, C.; Lin, W. ACS Appl. Mater. Interfaces 2017, 9, 35253.  doi: 10.1021/acsami.7b11277

    5. [5]

      SeethaLekshmi, S.; Ramya, A. R.; Reddy, M. L. P.; Varughese, S. J. Photochem. Photobiol. C 2017, 33, 109.  doi: 10.1016/j.jphotochemrev.2017.11.001

    6. [6]

      Shang, M.; Li, C.; Lin, J. Chem. Soc. Rev. 2014, 43, 1372.  doi: 10.1039/C3CS60314H

    7. [7]

      Yin, W.; Bai, X.; Chen, P.; Zhang, X.; Su, L.; Ji, C.; Gao, H.; Song, H.; Yu, W. W. ACS Appl. Mater. Interfaces 2018, 10, 43824.  doi: 10.1021/acsami.8b17966

    8. [8]

      Kang, X.; Song, S.; Wang, H.; Ling, D.; Lü, W. ACS Omega 2018, 3, 16714.  doi: 10.1021/acsomega.8b01952

    9. [9]

      He, Z.; Zhao, W.; Lam, J. W. Y.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B. Z. Nat. Commun. 2017, 8, 416.  doi: 10.1038/s41467-017-00362-5

    10. [10]

      Sun, C.-Y.; Wang, X.-L.; Zhang, X.; Qin, C.; Li, P.; Su, Z.-M.; Zhu, D.-X.; Shan, G.-G.; Shao, K.-Z.; Wu, H.; Li, J. Nat. Commun. 2013, 4, 3717.
       

    11. [11]

      Liu, Y.; Pan, M.; Yang, Q.-Y.; Fu, L.; Li, K.; Wei, S.-C.; Su, C.-Y. Chem. Mater. 2012, 24, 1954.  doi: 10.1021/cm3008254

    12. [12]

      Singh, K.; Boddula, R.; Vaidyanathan, S. Inorg. Chem. 2017, 56, 9376.  doi: 10.1021/acs.inorgchem.7b01565

    13. [13]

      Wu, J.; Zhang, H.; Du, S. J. Mater. Chem. C 2016, 4, 3364.  doi: 10.1039/C5TC04432D

    14. [14]

      Zhang, Z.; He, Y.-N.; Liu, L.; Lü, X.-Q.; Zhu, X.-J.; Wong, W.-K.; Pan, M.; Su, C.-Y. Chem. Commun. 2016, 52, 3713.  doi: 10.1039/C5CC09946C

    15. [15]

      Zheng, X.-L.; Liu, Y.; Pan, M.; Lü, X.-Q.; Zhang, J.-Y.; Zhao, C.-Y.; Tong, Y.-X.; Su, C.-Y. Angew. Chem., Int. Ed. 2007, 46, 7399.  doi: 10.1002/anie.200702401

    16. [16]

      Weissman, S. I. J. Chem. Phys. 1942, 10, 214.  doi: 10.1063/1.1723709

    17. [17]

      Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; Vander Tol, E. B.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408.  doi: 10.1021/ja00142a004

    18. [18]

      Latva, M.; Takalo, H.; Mukkala, V. M.; Matachescu, C.; Rodriguez-Ubis, J. C.; Kankare, J. J. Lumin. 1997, 75, 149.  doi: 10.1016/S0022-2313(97)00113-0

    19. [19]

      Li, R.; Wang, T. Chin. J. Lumin. 2018, 39, 425 (in Chinese).
       

    20. [20]

      Zhang, F.; Yan, P.; Li, H.; Zou, X.; Hou, G.; Li, G. Dalton Trans. 2014, 43, 12574.  doi: 10.1039/C4DT00837E

    21. [21]

      Barry, D. E.; Caffrey, D. F.; Gunnlaugsso, T. Chem. Soc. Rev. 2016, 45, 3244.  doi: 10.1039/C6CS00116E

    22. [22]

      Zhang, J.; Li, H.; Chen, P.; Sun, W.; Gao, T.; Yan, P. J. Mater. Chem. C 2015, 3, 1799.  doi: 10.1039/C4TC02512A

    23. [23]

      Bünzli, J.-C. G. Coord. Chem. Rev. 2015, 293~294, 19.
       

    24. [24]

      Yang, Q.-Y.; Wu, K.; Jiang, J.-J.; Hsu, C.-W.; Pan, M.; Lehn, J.-M.; Su, C.-Y. Chem. Commun. 2014, 50, 7702.  doi: 10.1039/C4CC01763C

    25. [25]

      Li, S.; Guo, N.; Liang, Q.-M.; Deng, H.-X. Chin. J. Inorg. Chem. 2017, 33, 543 (in Chinese).  doi: 10.11862/CJIC.2017.044

    26. [26]

      Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Chem. Rev. 2012, 112, 1126.  doi: 10.1021/cr200101d

    27. [27]

      Zhao, Y.-W.; Zhang, F.-Q.; Zhang, X.-M. ACS Appl. Mater. Interfaces 2016, 8, 24123.
       

    28. [28]

      Yang, Y.; Chen, L.; Jiang, F.; Yu, M.; Wan, X.; Zhang, B.; Hong, M. J. Mater. Chem. C 2017, 5, 1981.  doi: 10.1039/C6TC05316E

    29. [29]

      An, Y.-Y.; Lu, L.-P.; Feng, S.-S.; Zhu, M.-L. CrystEngComm 2018, 20, 2043.  doi: 10.1039/C8CE00008E

    30. [30]

      Huang, J.-J.; Yu, J.-H.; Bai, F.-Q.; Xu, J.-Q. Cryst. Growth Des. 2018, 18, 5353.  doi: 10.1021/acs.cgd.8b00773

    31. [31]

      Li, X.; Wang, Y.; Xie, J.; Yin, X.; Silver, M. A.; Cai, Y.; Zhang, H.; Chen, L.; Bian, G.; Diwu, J.; Chai, Z.; Wang, S. Inorg. Chem. 2018, 57, 8714.  doi: 10.1021/acs.inorgchem.8b01193

    32. [32]

      Zhang, Y.-H.; Li, X.; Song, S.; Yang, H.-Y.; Ma, D.; Liu, Y.-H. CrystEngComm 2014, 16, 8390.  doi: 10.1039/C4CE00923A

    33. [33]

      Cha, Y.-E.; Li, X.; Ma, D.; Huo, R. Eur. J. Inorg. Chem. 2014, 2969.
       

    34. [34]

      Rong, J.; Zhang, W.; Bai, J. RSC Adv. 2016, 6, 103714.  doi: 10.1039/C6RA22001K

    35. [35]

      Coppo, P.; Duati, M.; Kozhevnikov, V. N.; Hofstraat, J. W.; Cola, L. De. Angew. Chem., Int. Ed. 2005, 44, 1806.  doi: 10.1002/anie.200461953

    36. [36]

      Leng, J.; Li, H.; Chen, P.; Sun, W.; Gao, T.; Yan, P. Dalton Trans. 2014, 43, 12228.  doi: 10.1039/C4DT00820K

    37. [37]

      Al-Rasbi, N. K.; Adams, H.; Suliman, F. O. Dyes Pigm. 2014, 104, 83.  doi: 10.1016/j.dyepig.2013.12.030

    38. [38]

      Liao, W.-M.; Li, C.-J.; Wu, X.; Zhang, J.-H.; Wang, Z.; Wang, H.-P.; Fan, Y.-N.; Pan, M.; Su, C.-Y. J. Mater. Chem. C 2018, 6, 3254.  doi: 10.1039/C8TC00458G

    39. [39]

      An, R.; Zhao, H.; Hu, H.-M.; Wang, X.; Yang, M.-L.; Xue, G. Inorg.Chem.2016, 55, 871.  doi: 10.1021/acs.inorgchem.5b02375

    40. [40]

      Ma, D.; Li, X.; Huo, R. J. Mater. Chem. C 2014, 2, 9073.  doi: 10.1039/C4TC01409J

    41. [41]

      Zhang, H.; Shan, X.; Zhou, L.; Lin, P.; Li, R.; Ma, E.; Guo, X.; Du, S. J. Mater. Chem. C 2013, 1, 888.  doi: 10.1039/C2TC00414C

    42. [42]

      Zhou, Y.; Zhang, H.-Y.; Zhang, Z.-Y.; Liu, Y. J. Am. Chem. Soc. 2017, 139, 7168.  doi: 10.1021/jacs.7b03153

    43. [43]

      Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2172.
       

    44. [44]

      Al-Bahri, A.; Al-Zakwani, A. S.; Al-Farsi, S. M.; Al-Rasbi, N. K. ChemistrySelect 2016, 1, 1393.  doi: 10.1002/slct.201600262

    45. [45]

      Liu, C.-L.; Zhang, R.-L.; Lin, C.-S.; Zhou, L.-P.; Cai, L.-X.; Kong, J.-T.; Yang, S.-Q.; Han, K.-L.; Sun, Q.-F. J. Am. Chem. Soc. 2017, 139, 12474.  doi: 10.1021/jacs.7b05157

    46. [46]

      Xu, H.; Wang, J.; Wei, Y.; Xie, G.; Xue, Q.; Deng, Z.; Huang, W. J. Mater. Chem. C 2015, 3, 1893.  doi: 10.1039/C4TC02604G

    47. [47]

      Yang, H.; Zhang, Y.; Li, Y.; Wang, J.; Li, X.; Song, J.; Zhang, B.; Feng, Y. Chin. J. Org. Chem. 2017, 37, 1991 (in Chinese).
       

    48. [48]

      Chen, W.; Fan, R.; Zhang, H.; Dong, Y.; Wang, P.; Yang, Y. Dalton Trans. 2017, 46, 4265.  doi: 10.1039/C7DT00218A

    49. [49]

      Kotova, O.; Comby, S.; Lincheneau, C.; Gunnlaugsson, T. Chem. Sci. 2017, 8, 3419.  doi: 10.1039/C7SC00739F

    50. [50]

      Gu, Z.-G.; Chen, Z.; Fu, W.-Q.; Wang, F.; Zhang, J. ACS Appl. Mater. Interfaces 2015, 7, 28585.  doi: 10.1021/acsami.5b09975

    51. [51]

      Feng, W.-X.; Yin, S.-Y.; Pan, M.; Wang, H.-P.; Fan, Y.-N.; Lü, X.-Q.; Su, C.-Y. J. Mater. Chem. C 2017, 5, 1742.

    52. [52]

      Chen, P.; Holten-Andersen, N. Adv. Opt. Mater. 2015, 3, 1041.  doi: 10.1002/adom.201400493

    53. [53]

      Wang, S.; Wu, T.-Z.; Park, H.-J.; Peng, T.; Cao, L.-X.; Mellerup, S. K.; Yang, G.-Q.; Wang, N.; Peng, J.-B. Adv. Opt. Mater. 2016, 4, 1882.  doi: 10.1002/adom.201600408

    54. [54]

      Boddula, R.; Singh, K.; Giri, S.; Vaidyanathan, S. Inorg.Chem.2017, 56, 10127.  doi: 10.1021/acs.inorgchem.7b01255

    55. [55]

      Liu, L.; Fu, G.; Li, B.; Lü, X.; Wong, W.-K.; Jonesc, R. A. RSC Adv. 2017, 7, 6762.  doi: 10.1039/C6RA26724F

    56. [56]

      Zhang, A.; Sun, N.; Li, L.; Yang, Y.; Zhao, X.; Jia, H.; Liu, X.; Xu, B. J. Mater. Chem. C 2015, 3, 9933.  doi: 10.1039/C5TC02427G

    57. [57]

      Tigaa, R. A.; Aerken, X.; Fuchs, A.; de Bettencourt-Dias, A. Eur. J. Inorg. Chem. 2017, 5310.
       

    58. [58]

      Liu, H.; Chu, T.; Rao, Z.; Wang, S.; Yang, Y.; Wong, W.-T. Adv. Opt. Mater. 2015, 3, 1545.  doi: 10.1002/adom.201500203

    59. [59]

      Wang, H.-Y.; Ding, Z.-J.; Li, Z.; Zhang, Y.; Li, H. Colloid Polym. Sci. 2018, 296, 53.  doi: 10.1007/s00396-017-4223-5

    60. [60]

      Feng, C.; Sun, J.-W.; Yan, P.-F.; Li, Y.-X.; Liu, T.-Q.; Sun, Q.-Y.; Li, G.-M. Dalton Trans. 2015, 44, 4640.  doi: 10.1039/C4DT03457K

    61. [61]

      Xiao, Y.; Wang, S.-H.; Zheng, F.-K.; Wu, M.-F.; Xu, J.; Liu, Z.-F.; Chen, J.; Lia, R.; Guo, G.-C. CrystEngComm 2016, 18, 721.  doi: 10.1039/C5CE02140E

    62. [62]

      Guo, P.-H.; Meng, Y.; Chen, Y.-C.; Li, Q.-W.; Wang, B.-Y.; Leng, J.-D.; Bao, D.-H.; Jia, J.-H.; Tong, M.-L.; J. Mater. Chem. C 2014, 2, 8858.  doi: 10.1039/C4TC01275E

    63. [63]

      Sutar, P.; Maji, T. K. Inorg. Chem. 2017, 56, 9417.  doi: 10.1021/acs.inorgchem.7b01002

    64. [64]

      Kumar, P.; Soumya, S.; Prasad, E. ACS Appl. Mater. Interfaces 2016, 8, 8068.  doi: 10.1021/acsami.6b00018

    65. [65]

      Silva, J. Y. R.; da Luz, L. L.; Mauricio, F. G. M.; Vasconcelos Alves, I. B.; Ferro, J. N. de S.; Barreto, E.; Júnior, S. A. ACS Appl. Mater. Interfaces 2017, 9, 16458.  doi: 10.1021/acsami.6b15667

    66. [66]

      Mahapatra, T. S.; Singh, H.; Maity, A.; Dey, A.; Pramanik, S. K.; Suresh, E.; Das, A. J. Mater. Chem. C 2018, 6, 9756.  doi: 10.1039/C8TC03487G

    67. [67]

      Gao, X.; Chang, S.; Liu, H.; Liu, Z. Eur. J. Inorg. Chem. 2016, 2837.

    68. [68]

      Gai, Y.; Guo, Q.; Xiong, K.; Jiang, F.; Li, C.; Li, X.; Chen, Y.; Zhu, C.; Huang, Q.; Yao, R.; Hong, M. Cryst. Growth Des. 2017, 17, 940.  doi: 10.1021/acs.cgd.6b01541

    69. [69]

      Fan, L.; Fan, W.; Li, B.; Zhao, X.; Zhang, X. New J. Chem. 2016, 40, 10440.  doi: 10.1039/C6NJ00294C

    70. [70]

      Huang, W.; Pan, F.; Liu, Y.; Huang, S.; Li, Y.; Yong, J.; Li, Y.; Kirillov, A. M.; Wu, D. Inorg. Chem. 2017, 56, 6362.  doi: 10.1021/acs.inorgchem.7b00457

    71. [71]

      Ma, M.-L.; Qin, J.-H.; Ji, C.; Xu, H.; Wang, R.; Li, B.-J.; Zang, S.-Q.; Hou, H.-W.; Batten, S. R. J. Mater. Chem. 2014, 2, 1085.  doi: 10.1039/C3TA14263A

    72. [72]

      Mondal, S. S.; Behrens, K.; Matthes, P. R.; Schönfeld, F.; Nitsch, J.; Steffen, A.; Primus, P.-A.; Kumke, M. U.; Müller-Buschbaum, K.; Holdt, H.-J. J. Mater. Chem. C 2015, 3, 4623.  doi: 10.1039/C4TC02919D

    73. [73]

      Xie, W.; Zhang, S.-R.; Du, D.-Y.; Qin, J.-S.; Bao, S.-J.; Li, J.; Su, Z.-M.; He, W.-W.; Fu, Q.; Lan, Y.-Q. Inorg. Chem. 2015, 54, 3290.  doi: 10.1021/ic5029383

    74. [74]

      He, H.; Sun, F.; Borjigin, T.; Zhao, N.; Zhu, G. Dalton Trans. 2014, 43, 3716.  doi: 10.1039/C3DT53013B

    75. [75]

      Du, X.; Fan, R.; Qiang, L.; Wang, P.; Song, Y.; Xing, K.; Zheng, X.; Yang, Y. Cryst. Growth Des. 2017, 17, 2746.  doi: 10.1021/acs.cgd.7b00219

    76. [76]

      Zhou, Z.; Li, Q.; Han, Y.; Xing, X.; Du, S. RSC Adv. 2015, 5, 97831.  doi: 10.1039/C5RA20142J

    77. [77]

      Li, X.-Y.; Shi, W.-J.; Wang, X.-Q.; Ma, L.-N.; Hou, L.; Wang, Y.-Y. Cryst. Growth Des. 2017, 17, 4217.  doi: 10.1021/acs.cgd.7b00530

    78. [78]

      Song, S.; Li, X.; Zhang, Y.-H.; Huo, R.; Ma, D. Dalton Trans. 2014, 43, 5974.  doi: 10.1039/C3DT53139B

    79. [79]

      Huo, R.; Li, X.; Ma, D. CrystEngComm 2015, 17, 3838.  doi: 10.1039/C5CE00548E

    80. [80]

      Ma, D.; Huo, R.; Li, X. CrystEngComm 2015, 17, 6575.  doi: 10.1039/C5CE01302J

    81. [81]

      da Luz, L. L.; F. B.; Viana, L.; Oliveira da Silva, G. C.; Gatto, C. C.; Fontes, A. M.; Malta, M.; Weber, I. T.; Rodrigues, M. O.; Júnior, S. A. CrystEngComm 2014, 16, 6914.  doi: 10.1039/C4CE00538D

    82. [82]

      Zhu, M.; Hao, Z.-M.; Song, X.-Z.; Meng, X.; Zhao, S.-N.; Song, S.-Y.; Zhang, H.-J. Chem. Commun. 2014, 50, 1912.  doi: 10.1039/c3cc48764d

    83. [83]

      Jia, J.; Xu, J.; Wang, S.; Wang, P.; Gao, L.; Yu, M.; Fan, Y.; Wang, L. CrystEngComm 2015, 17, 6030.  doi: 10.1039/C5CE00823A

    84. [84]

      Zhao, D.; Rao, X.; Yu, J.; Cui, Y.; Yang, Y.; Qian, G. J. Solid State Chem. 2015, 230, 287.  doi: 10.1016/j.jssc.2015.07.017

    85. [85]

      Shen, L.; Yang, L.; Fan, Y.; Wang, L.; Xu, J. CrystEngComm 2015, 17, 9363.  doi: 10.1039/C5CE01718A

    86. [86]

      Zhang, H.; Shan, X.; Ma, Z.; Zhou, L.; Zhang, M.; Lin, P.; Hu, S.; Ma, E.; Li R.; Du, S. J. Mater. Chem. C 2014, 2, 1367.  doi: 10.1039/c3tc31624f

    87. [87]

      Tang, Q.; Liu, S.; Liu, Y.; He, D.; Miao, J.; Wang, X.; Ji, Y.; Zheng, Z. Inorg. Chem. 2014, 53, 289.  doi: 10.1021/ic402228g

    88. [88]

      Zhou, Y.; Yan, B. Inorg. Chem. 2014, 53, 3456.  doi: 10.1021/ic402900x

    89. [89]

      Zhou, Y.; Yan, B. Nanoscale 2015, 7, 4063.  doi: 10.1039/C4NR06873D

    90. [90]

      Lu, Y.; Yan, B. Chem. Commun. 2014, 50, 15443.  doi: 10.1039/C4CC07852G

    91. [91]

      Wang, Y.; Xing, S.-H.; Bai, F.-Y.; Xing, Y.-H.; Sun, L.-X. Inorg. Chem. 2018, 57, 12850.  doi: 10.1021/acs.inorgchem.8b02050

    92. [92]

      Wei, Y.; Li, Q.; Sa, R.; Wu, K. Chem. Commun. 2014, 50, 1820.  doi: 10.1039/c3cc48344d

    93. [93]

      Han, Y.; Yan, P.; Sun, J.; An, G.; Yao, X.; Li, Y.; Li, G. Dalton Trans. 2017, 46, 4642.  doi: 10.1039/C7DT00215G

    94. [94]

      Hao, J.; Yan, B. J. Mater. Chem. C 2014, 2, 6758.  doi: 10.1039/C4TC00962B

    95. [95]

      Wei, Y.; Sa, R.; Wu, K. Dalton Trans. 2016, 45, 18661.  doi: 10.1039/C6DT03655D

    96. [96]

      Du, B.-B.; Zhu, Y.-X.; Pan, M.; Yue, M.-Q.; Hou, Y.-J.; Wu, K.; Zhang, L.-Y.; Chen, L.; Yin, S.-Y.; Fan, Y.-N.; Su, C.-Y. Chem. Commun. 2015, 51, 12533.  doi: 10.1039/C5CC04468E

    97. [97]

      Xu, L.; Xu, Y.; Li, X.; Wang, Z.; Sun, T.; Zhang, X. Dalton Trans. 2018, 47, 16696.  doi: 10.1039/C8DT03474E

    98. [98]

      Pan, M.; Du, B.-B.; Zhu, Y.-X.; Yue, M.-Q.; Wei, Z.-W.; Su, C.-Y. Chem.-Eur. J. 2016, 22, 2440.  doi: 10.1002/chem.201504344

    99. [99]

      Liu, J.; Sun, W.; Liu, Z. RSC Adv. 2016, 6, 25689.  doi: 10.1039/C6RA01931E

    100. [100]

      Ramya, A. R.; Varughese, S.; Reddy, M. L. P. Dalton Trans. 2014, 43, 10940.  doi: 10.1039/C4DT00871E

    101. [101]

      Wu, L.-L.; Zhao, J.; Wang, H.; Wang, J. CrystEngComm 2016, 18, 4268.  doi: 10.1039/C5CE02444G

    102. [102]

      Zhang, H.; Fan, R.; Dong, Y.; Chen, W.; Du, X.; Wang, P.; Yang, Y. CrystEngComm 2016, 18, 3711.  doi: 10.1039/C6CE00483K

    103. [103]

      Wang, W.; Wang, R.; Ge, Y.; Wu, B. RSC Adv. 2018, 8, 42100.  doi: 10.1039/C8RA06793G

    104. [104]

      Rong, J.; Zhang, W.; Bai, J. CrystEngComm 2016, 18, 7728.  doi: 10.1039/C6CE01585A

    105. [105]

      Li, H.; Liu, H.-B.; Tao, X.-M.; Su, J.; Ning, P.-F.; Xu, X.-F.; Zhou, Y.; Gu, W.; Liu, X. Dalton Trans. 2018, 47, 8427.  doi: 10.1039/C8DT01477A

    106. [106]

      Yan, C.; Chen, L.; Pan, M.; Zhang, L.-Y.; Yin, S.-Y.; Zhu, Y.-X.; Wu, K.; Hou, Y.-J.; Su, C.-Y. New J. Chem. 2015, 39, 3770.  doi: 10.1039/C5NJ00168D

    107. [107]

      Li, Y.; Li, S.; Yan, P.; Wang, X.; Yao, X.; An, G.; Li, G. Chem. Commun. 2017, 53, 5067.  doi: 10.1039/C7CC00258K

    108. [108]

      Park, J.; Oh, M. CrystEngComm 2016, 18, 8372.  doi: 10.1039/C6CE01794K

    109. [109]

      Chen, B.; Feng, J. J. Phys. Chem. C 2015, 119, 7865.  doi: 10.1021/acs.jpcc.5b00208

    110. [110]

      Zhu, Q.; Zhang, L.; Vliet, K. V.; Miserez, A.; Holten-Andersen, N. ACS Appl. Mater. Interfaces 2018, 10, 10409.  doi: 10.1021/acsami.7b17016

    111. [111]

      Zhang, T.; Zhai, Y.; Wang, H.; Zhu, J.; Xu, L.; Dong, B.; Song, H. RSC Adv. 2016, 6, 61468.  doi: 10.1039/C6RA11386A

  • 加载中
    1. [1]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    2. [2]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    16. [16]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(11)
  • Abstract views(954)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return