Recent Advances of the Synthesis of Indolines by Unactivated Alkenes
- Corresponding author: Liu Yingjie, liuyj691@nenu.edu.cn
Citation:
Liu Yingjie, Lin Liqing, Han Yinghui, Zhang Xin. Recent Advances of the Synthesis of Indolines by Unactivated Alkenes[J]. Chinese Journal of Organic Chemistry,
;2019, 39(10): 2705-2712.
doi:
10.6023/cjoc201904014
Silva, T. S.; Rodrigues, M. T.; Santos, H.; Zeoly, L. A.; Almeida, W. P.; Barcelos, R. C.; Gomes, R. C.; Fernandes, F. S.; Coelho, F. Tetrahedron 2019, 75, 2553.
doi: 10.1016/j.tet.2019.03.032
Collins, M. A.; Hudak, V.; Bender, R.; Fensome, A.; Zhang, P.; Miller, L. Med. Chem. Lett. 2004, 14, 2185.
doi: 10.1016/j.bmcl.2004.02.054
Tokunaga, T.; Hume, W. E.; Umezone, T.; Okazaki, K.; Ueki, Y.; Kumagai, K. J. Med. Chem. 2001, 44, 4641.
doi: 10.1021/jm0103763
(a) Wang, T.; Xu, Q.; Yu, P. Org. Lett. 2001, 3, 345.
(b) Bui, T.; Syed, S.; Barbas, C F. J. Am. Chem. Soc. 2009, 131, 8758.
(c) Toda, N.; Ori, M.; Takami, K.; Tago, K.; Kogen, H. Org. Lett. 2003, 5, 269.
(d) Zhang, H.; Boonsombat, J.; Padwa, A. Org. Lett. 2007, 9, 279.
(e) Langlois, N.; Gueritte, F.; Langlois, Y. J. Am. Chem. Soc. 1976, 98, 7017.
(f) Marino, J. P.; Rubio, M. B.; Cao, G. J. Am. Chem. Soc. 2002, 124, 13398.
(a) Van Order, R. B.; Lindwall, H. G. Chem. Rev. 1942, 30, 69.
(b) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195.
(c) Petrini, M. Chem. Eur. J. 2017, 23, 16115.
(d) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. ACS Catal. 2017, 7, 5618.
(a) Kirillova, M. S.; Miloserdov, F. M.; Echavarren, A. M. Org. Chem. Front. 2018, 5, 273.
(b) Song, J.; Chen, D.; Gong, L. Natl. Sci. Rev. 2017, 4, 381.
(c) Corsello, M. A.; Kim, J.; Garg, N. Chem. Sci. 2017, 8, 5836.
(d) Homer, J. A.; Sperry, J. J. Nat. Prod. 2017, 80, 2178.
(a) Singh, A. K.; Raj, V.; Saha, S. Eur. J. Med. Chem. 2017, 142, 244.
(b) Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
(c) Sugimoto, S.; Naganuma, M.; Kanai, T. J. Gastroenterol. 2016, 51, 853.
(d) Megna, B. W.; Carney, P. R.; Nukaya, M.; Geiger, P.; Kennedy, G. D. J. Surg. Res. 2016, 204, 47.
(a) Zheng, C.; Zheng, S. Y. Chem 2016, 1, 830.
(b) Liang, X.; Zheng, C.; You, S. Chem.-Eur. J. 2016, 22, 11918.
(c) Roche, S. P.; Tendoung, J. Y.; Treguier, B. Tetrahedron 2015, 71, 3549.
(d) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.
(a) Wang, L.; Li, S.; Blmel, M.; Puttreddy, R.; Peuronen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2017, 56, 8516.
(b) Zhao, B.; Du, D.; Chem. Commun. 2016, 52, 6162.
(c) Kayal, S.; Mukherjee, S.Org. Biomol. Chem. 2016, 14, 10175.
(d) Du, D.; Jiang, Y.; Xu, Q.; Tang, X.; Shi, M. ChemCatChem 2015, 7, 1366.
For selected reviews on difunctionalization of alkenes, see:
(a) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
(c) Jacques, B.; Muniz, K. In Catalyzed Carbon-Heteroatom Bond Formation, Ed.: Yudin, A. K., Wiley-VCH, Weinheim, 2010, 119.
(d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
(e) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
(f) Sun, K.; Luan, B.; Liu, Z.; Zhu, J.; Du, J.; Bai, E.; Fang, Y.; Zhang, B. Org. Bimol. Chem.2019, 17, 4208.
(g) Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Org. Lett. 2019, 21, 2052.
(h) Sun, K.; Shi, Z.; Liu, Z.; Luan, B.; Zhu, J.; Xue, Y. Org. Lett. 2018, 20, 6687.
(a) Lan, X.; Wang, N.; Xing, Y. Eur. J. Org. Chem. 2017, 5821.
(b) Bag, R.; De, P. B.; Pradhan, S.; Punniyamurthy, T. Eur. J. Org. Chem. 2017, 5424.
(c) Romero, R. M.; Wçste, T. H.; MuÇiz, K. Chem. Asian J. 2014, 9, 972.
(d) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
(a) Smart, B. E. Chem. Rev. 1996, 96, 1555.
(b) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
(c) Muller, C. K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(e) Wang, F.; Wang, D.-H.; Mu, X.; Chen, P.-H.; Liu, G.-S. J. Am. Chem. Soc. 2014, 136, 10202.
For recent reviews on trifluoromethylation of alkenes, see:
(a) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(b) Egami, H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53, 8294.
For selected examples, see:
(a) Li, L.; Gu, Q.; Wang, N.; Song, P.; Li, Z.; Li, X.; Wang, F.; Liu, X. Chem. Commun. 2017, 53, 4038.
(b) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937.
(c) Ye, J.; Song, L.; Zhou, W.; Ju, T.; Yin, Z.; Yan, S.; Zhang, Z.; Li, J.; Yu, D. Angew. Chem., Int. Ed. 2016, 55, 10022.
(d) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. Org. Lett. 2015, 17, 6034.
(e) Yang, B.; Xu, X.; Qing, F. Org. Lett. 2015, 17, 1906.
Recent examples for trifluoromethylative alkene difunctionalization of N-arylacrylamides:
(a) Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2016, 55, 8740.
(b) Guo, J.; Wu, R.; Jin, J.; Tian, S. Org. Lett. 2016, 18, 3850.
(c) Liu, C.; Zhao, W.; Huang, Y.; Wang, H.; Zhang, B. Tetrahedron 2015, 71, 4344.
Synthesis of CF3CH2-containing oxindoles from acryl sulfonamides:
(a) Zheng, L.; Yang, C.; Xu, Z.; Gao, F.; Xia, W. J. Org. Chem. 2015, 80, 5730.
(b) Li, L.; Deng, M.; Zheng, S.; Xiong, Y.; Tan, B.; Liu, X. Org. Lett. 2014, 16, 504.
(c) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480.
Bertrand, F.; Pevere, V.; Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2001, 3, 1069.
doi: 10.1021/ol0156446
Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.
doi: 10.1002/anie.201210250
Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. J. Org. Chem. 2017, 82, 12539.
doi: 10.1021/acs.joc.7b02307
Dai, J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
doi: 10.1021/ja404217t
Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. J. Org. Chem. 2017, 82, 5790.
doi: 10.1021/acs.joc.7b00598
Liang, D.; Dong, Q.; Xu, P.; Dong, Y.; Li, W.; Ma, Y. J. Org. Chem. 2018, 83, 11978.
doi: 10.1021/acs.joc.8b01861
(a) Yang, B.; Xu, X.; Qing, F. Chin. J. Chem. 2016, 34, 465.
(b) Huang, H.; Yan, H.; Gao, G.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
(c) Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Commun. 2014, 50, 14101.
(a) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.
(b) Zhang, H.; Chen, P.; Liu, G. Synlett 2012, 23, 2749.
Krys, P.; Matyjaszewski, K. Eur. Polym. J. 2017, 89, 482.
doi: 10.1016/j.eurpolymj.2017.02.034
Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2016, 55, 58.
doi: 10.1002/anie.201505090
Recent examples see:
(a) Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.
(b) Sato, M.; Azuma, H.; Daigaku, A.; Sato, S.; Takasu, K.; Okano, K.; Tokuyama, H. Angew. Chem., Int. Ed. 2017, 56, 1087.
(c) Ren, S.; Zhang, F.; Qi, J.; Huang, Y.; Xu, A.; Yan, H.; Wang, Y. J. Am. Chem. Soc. 2017, 139, 6050.
(d) Gharpure, S. J.; Shelke, Y. G. Org. Lett. 2017, 19, 5022.
(e) Zhang, H.; Ma, S.; Xing, Z.; Liu, L.; Fang, B.; Xie, X.; She, X. Org. Chem. Front. 2017, 4, 2211.
(f) Liu, X.; Luo, X.; Wu, Z.; Cui, X.; He, Y.; Huang, G. J. Org. Chem. 2017, 82, 2107.
(a) Irudayanathan, F. M.; Lee, S. Org. Lett. 2017, 19, 2318.
(b) Liu, B.; Wang, C.; Hu, M.; Song, R.; Chen, F.; Li, J. Chem. Commun. 2017, 53, 1265.
(c) Song, W.; Yan, P.; Shen, D.; Chen, Z.; Zeng, X.; Zhong, G. J. Org. Chem. 2017, 82, 4444.
(d) Lan, X.; Wang, N.; Bai, C.; Lan, C.; Zhang, T.; Chen, S.; Xing, Y. Org. Lett. 2016, 18, 5986.
(e) Deng, Y.; Tang, S.; Ding, G.; Wang, M.; Li, J.; Li, Z.; Yuan, L.; Sheng, R. Org. Biomol. Chem. 2016, 14, 9348.
(f) Gao, B.; Xie, Y.; Yang, L.; Huang, H. Org. Biomol. Chem. 2016, 14, 2399.
(g) Xie, Y.; Guo, S.; Wu, L.; Xia, C.; Huang, H. Angew. Chem., Int. Ed. 2015, 54, 5900.
(h) Rong, G.; Mao, J.; Zheng, Y.; Yao, R.; Xu, X. Chem. Commun. 2015, 51, 13822.
Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Adv. Synth. Catal. 2018, 360, 2488.
doi: 10.1002/adsc.201800296
(a) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
(b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
(c) Wang, J.; Sánchez-Roselló, M.; Acena, J. L.; Pozo, C. del; Sorochinsky, A. E.; Fustero, S.; Soloshonok V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(d) Paul C.; Pohnert, G. Nat. Prod. Rep. 2011, 28, 186.
(e) Latham, J.; Brandenburger, E.; Shepherd, S. A.; Menon, B. R. K.; Micklefield, J. Chem. Rev. 2018, 118, 232.
(a) Sitachitta, N.; Rossi, J.; Roberts, M. A.; Gerwick, W. H.; Fletcher M. D.; Willis, C. L. J. Am. Chem. Soc. 1998, 120, 7131.
(b) Owusu-Ansah, E.; Durow, A. C.; Harding, J. R.; Jordan, A. C.; O'Connell S.J.; Willis, C. L. Org. Biomol. Chem. 2011, 9, 265.
(c) Yu, H.-Y.; Bao, L.-J.; Liang, Y.; Zeng, E. Y. Environ. Sci. Technol. 2011, 45, 5245.
(d) Wagner, C.; Omari M. E.; Kö nig, G. M. J. Nat. Prod. 2009, 72, 540.
(e) Ardá, A.; Soengas, R. G.; Nieto, M. I.; Jiménez, C.; Rodríguez, J. Org. Lett. 2008, 10, 2175.
(f) Orjala, J. O.; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
(g) Nguyen, V.-A.; Willis, C. L.; Gerwick, W. H. Chem. Commun. 2001, 1934.
(h) Durow, A. C.; Long, G. C.; O'Connell, S. J.; Willis, C. L. Org. Lett. 2006, 8, 5401.
Pan, C.; Gao, D.; Yang, Z.; Wu, C.; Yu, J. Org. Biomol. Chem. 2018, 16, 5752.
doi: 10.1039/C8OB01554F
Simmons, E. M.; Hartwig, J. Angew. Chem., Int. Ed. 2012, 51, 3066.
doi: 10.1002/anie.201107334
(a) Chan, C.-W.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. Org. Lett. 2010, 12, 3296.
(b) Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.
(c) Tang, B.-X.; Song, R.-J.; Li, J.-H. J. Am. Chem. Soc. 2010, 132, 8900.
(d) Wu, Y.; Li, B.; Mao, F.; Li, X.; Kwong, F. Y. Org. Lett. 2011, 13, 3258.
Pan, C.; Yang, Z.; Gao, D.; Yu, J. Org. Biomol. Chem. 2018, 16, 6035.
doi: 10.1039/C8OB01329B
(a) Tercel, M.; Lee, H. H.; Mehta, S. Y.; Youte Tendoung, J.-J.; Bai, S. Y.; Liyanage, H. D. S.; Pruijn, F. B. J. Med. Chem. 2017, 60, 5834.
(b) Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. J. Med. Chem. 2016, 59, 5264.
(c) Palmerini, C. A.; Tartacca, F.; Mazzoni, M.; Granieri, L.; Goracci, L.; Scrascia, A.; Lepri, S. Eur. J. Med. Chem. 2015, 102, 403.
(d) Na, Z.; Pan, S.; Uttamchandani, M.; Yao, S. Q. Angew. Chem., Int. Ed. 2014, 53, 8421.
(e) Kandekar, S.; Preet, R.; Kashyap, M.; Mu, R. P.; Mohapatra, P.; Das, D.; Satapathy, S. R.; Siddharth, S.; Jain, V.; Choudhuri, M.; Kundu, C. N.; Guchhait, S. K.; Bharatam, P. V. ChemMedChem 2013, 8, 1873.
(f) Zhao, R. Y.; Erickson, H. K.; Leece, B. A.; Reid, E. E.; Goldmacher, V. S.; Lambert, J. M.; Chari, R. V. J. J. Med. Chem. 2012, 55, 766.
(a) Chansaenpak, K.; Wang, M.; Liu, S.; Wu, Z.; Yuan, H.; Conti, P. S.; Li, Z.; Gabbaï, F. P. RSC Adv. 2016, 6, 23126.
(b) Cai, Z.; Ouyang, Q.; Zeng, D.; Nguyen, K. N.; Modi, J.; Wang, L.; White, A. G.; Rogers, B. E.; Xie, X.; Anderson, C. J. J. Med. Chem. 2014, 57, 6019.
(a) Dousson, C.; Alexandre, F.; Amador, A.; Bonaric, S.; Bot, S.; Caillet, C.; Convard, T.; da Costa, D.; Lioure, M.; Roland, A.; Rosinovsky, E.; Maldonado, S.; Parsy, C.; Trochet, C.; Storer, R.; Stewart, A.; Wang, J.; Mayes, B. A.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Moussa, A.; Jakubik, J.; Hubbard, L.; Seifer, M.; Standring, D. J. Med. Chem. 2016, 59, 1891.
(b) Alexandre, F.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B. J. Med. Chem. 2011, 54, 392.
Okon, A.; Matos de Souza, M. R.; Shah, R.; Amorim, R.; da Costa, L. J.; Wagner, C. R. ACS Med. Chem. Lett. 2017, 8, 958.
doi: 10.1021/acsmedchemlett.7b00277
Li, M.; Nyantakyi, S. A.; Gopal, P.; Aziz, D. B.; Dick, T.; Go, M. ACS Med. Chem. Lett. 2017, 8, 1165.
doi: 10.1021/acsmedchemlett.7b00287
(a) Fricke, J.; Blei, F.; Hoffmeister, D. Angew. Chem., Int. Ed. 2017, 56, 12352.
(b) Hofmann, A.; Heim, R.; Brack, A.; Kobel, H.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Helv. Chim. Acta 1959, 42, 1557.
Wu, S.; Cao, Q.; Wang, X.; Cheng, K.; Cheng, Z. Chem. Commun. 2014, 50, 8919.
doi: 10.1039/C4CC03296A
Vaillard, S. E.; Postigo, A.; Rossi, R. A. J. Org. Chem. 2002, 67, 8500.
doi: 10.1021/jo026404m
Gagosz, F.; Zard, S. Z. Synlett 2003, 387.
Bruch, A.; Ambrosius, A.; Fröhlich, R.; Studer, A.; Guthrie, D. B.; Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 11452.
doi: 10.1021/ja105070k
Bruch, A.; Fröhlich, R.; Grimme, S.; Studer, A.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 16270.
doi: 10.1021/ja2070347
Liang, D.; Ge, D.; Lü, Y.; Huang, W.; Wang, B.; Li, W. J. Org. Chem. 2018, 83, 4681.
doi: 10.1021/acs.joc.8b00450
(a) Xu, J.; Yu, X.; Song, Q. Org. Lett. 2017, 19, 980.
(b) Li, Y.; Sun, M.; Wang, H.; Tian, Q.; Yang, S. Angew. Chem., Int. Ed.2013, 52, 3972.
(c) Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049