Citation: Yin Qing, Yu Xiaoqiang, Bao Ming. A Novel Method for the Synthesis Triarylphosphines under Transition-Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2930-2935. doi: 10.6023/cjoc201904006 shu

A Novel Method for the Synthesis Triarylphosphines under Transition-Metal-Free Conditions

  • Corresponding author: Yu Xiaoqiang, yuxiaoqiang@dlut.edu.cn
  • Received Date: 2 April 2019
    Revised Date: 26 April 2019
    Available Online: 21 October 2019

    Fund Project: the National Natural Science Foundation of China Nos. 21572028, 21573032Project supported by the National Natural Science Foundation of China (Nos. 21572028, 21573032)the National Natural Science Foundation of China 21573032

Figures(2)

  • Triarylphosphines play an important role in pharmaceutical synthesis and transition-meal-catalyzed reactions. In this paper, a novel method for the synthesis of triarylphosphines via base-promoted C(sp2)-P cross-coupling reactions of alkyldiphenylphosphines with aryl halides is described. The transition-metal-free reaction condition, readily available starting materials and experimental simplicity are the features of the novel method.
  • 加载中
    1. [1]

      (a) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
      (b) Beletskaya, I. P.; Kazankova, M. A. Russ. J. Org. Chem. 2002, 38, 1391.
      (c) Kosolapoff, G. M.; Maier, L. In Organic Phosphorus Compounds, Vol. 1, 2nd ed., Wiley-Interscience, New York, 1972, p. 545.
      (d) Ojima, I.; Clos, N.; Bastos, C. Tetrahedron 1989, 45, 6901.
      (e) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.

    2. [2]

      (a) Tran, U. P. N.; Hock, K, J.; Gordon, C. P. Chem. Commun. 2017, 53, 4950.
      (b) Zheng, F.; Leung, T.; Chan, K. Chem. Commun. 2016, 52, 10767.
      (c) Shih, H. W.; Prescher, J. A. J. Am. Chem. Soc. 2015, 137, 10036.

    3. [3]

      (a) Jiménez, M. V.; Pérez-Torrente, J. J. Synthesis 2009, 1916.
      (b) Zakharkin, L. I.; Anikina, E. V. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 3, 714.
      (c) Unruh, J. D.; Christenson, J. R. J. Mol. Catal. 1982, 14, 19.
      (d) Imamoto, T.; Kikuchi, S. I.; Miura, T.; Wada, Y. Org. Lett. 2001, 3, 87.

    4. [4]

      (a) Michaelis, A. Chem. Ber. 1879, 12, 1009.
      (b) Kosolapoff, G. M.; Huber, W. F. J. Am. Chem. Soc. 1947, 69, 2020.
      (c) Gefter, E. L. Zh. Obsh. Khim. 1958, 28, 1338.

    5. [5]

      (a) Li, Y.; Das, S.; Beller, M. J. Am. Chem. Soc. 2012, 134, 9727.
      (b) Buonomo, J. A.; Eiden, C. G.; Aldrich, C. C. Chem.-Eur. J. 2017, 23, 14434.
      (c) Herault, D.; Nguyen, D. H.; Nuel, D. Chem. Soc. Rev. 2015, 44, 2508.
      (d) Rinehart, N. I.; Kendall, A. J.; Tyler, D. R. Organometallics 2018, 37, 182.
      (e) Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748.

    6. [6]

      (a) Herd, O.; Stelzer, O. J. Organomet. Chem. 1996, 522, 69.
      (b) Machnitzki, P.; Stelzer, O. Eur. J. Inorg. Chem. 1998, 7, 1029.
      (c) Nowrouzi, N.; Keshtgar, S.; Jahromi, E. B. Tetrahedron Lett. 2016, 57, 348.
      (d) Xu, Z.; Wang, P.; Cai, M. J. Org. Chem. 2018, 866, 50.
      (e) Stadler, A.; Kappe, C. O. Org. Lett. 2002, 4, 3541.
      (f) Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Science 2017, 356, 1059.

    7. [7]

      (a) Yang, J.; Chen, T.; Han, L. B. J. Am. Chem. Soc. 2015, 137, 1782.
      (b) Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L. J. Org. Chem. 1994, 59, 7180.
      (c) Cai, D.; Payack, J. F.; Bender, D. R. Org. Synth. 1998, 76, 6.
      (d) Sun, M.; Zang, Y. S.; Hou, L. K. Eur. J. Org. Chem. 2014, 30, 6796.

    8. [8]

      (a) Fang, Z.; Cai, M.; Lin, Y.; Zhao, H. Appl. Organomet. Chem. 2018, 32, 4417.
      (b) Allen, D. V.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590.
      (c) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315.
      (d) Rao, H. H.; Jin, Y.; Zhao, Y. F. Chem.- Eur. J. 2006, 12, 3636.
      (e) Huang, C.; Tang, X.; Jiang, Y. Y.; Zhao, Y. F. J. Org. Chem. 2006, 71, 5020.

    9. [9]

      (a) Li, Y.; Chakrabarty, S.; Studer, A. Angew. Chem., Int. Ed. 2016, 55, 802.
      (b) Schumann, H.; Jutzi, P.; Schmidt, M. Angew. Chem., Int. Ed. Engl. 1965, 4, 869.
      (c) Schumann, H.; Jutzi, P.; Schmidt, M. Angew. Chem. 1965, 77, 912.

    10. [10]

      Li, Y. M.; Yang, S. D. Synthesis 2013, 1739.

    11. [11]

      (a) Yu, R. R.; Chen, X. Y.; Martin, S. F.; Wang, Z. Q. Org. Lett. 2017, 19, 1808.
      (b) Yu, R. R.; Chen, X. Y.; Wang, Z. Q. Tetranedron Lett. 2016, 57, 3404.
      (c) Yang, J. F.; Wu, H. Y.; Wang, Z. Q.; Saudi, J. Chem. Soc. 2016, 7, 1319.

    12. [12]

      Nandi, P.; Dye, J. L.; Bentley, P.; Jackson, J. E. Org. Lett. 2009, 11, 1689.  doi: 10.1021/ol900222v

    13. [13]

      (a) Shirakawa, E.; Zhang, X.; Hayashi, T. Angew. Chem. Int. Ed. 2011, 50, 4671.
      (b) Bunnett, J. F. Acc. Chem. Res. 1978, 11, 413.

    14. [14]

      Schindlbauer, H. Monatsh. Chem. 1965, 96. 2058.  doi: 10.1007/BF01185936

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(5)
  • Abstract views(1225)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return