Citation: Li Kunyu, Bai Lu, Luan Xinjun. Pd-Catalyzed Dearomative Spirocyclization of Bromophenols via[2+2+1] Strategy[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2211-2217. doi: 10.6023/cjoc201903065 shu

Pd-Catalyzed Dearomative Spirocyclization of Bromophenols via[2+2+1] Strategy

  • Corresponding author: Bai Lu, xluan@nwu.edu.cn Luan Xinjun, xluan@nwu.edu.cn
  • The authors contributed equally to this word
  • Received Date: 28 March 2019
    Revised Date: 26 April 2019
    Available Online: 28 August 2019

    Fund Project: the National Natural Science Foundation of China 21672169the Key Laboratory Project of Xi'an City 201805058ZD9CG42Project supported by the National Natural Science Foundation of China (No. 21672169), and the Key Laboratory Project of Xi'an City (No. 201805058ZD9CG42)

Figures(1)

  • A novel palladium(0)-catalyzed dearomative spirocyclization reaction of bromophenols has been developed for building a series of spirocyclic architectures containing a quaternary carbon center via[2+2+1] strategy. This method employs inexpensive bromophenols and easily accessible alkynes. It exhibits a broad substrate scope in good yields. Notably, this transformation can be realized with high regioselectivity (>19:1 rr) when using unsymmetrical alkynes, which greatly expands the research scope of phenol dearomatization.
  • 加载中
    1. [1]

      (a) Edrada, R. A.; Stessman, C. C.; Crews, P. J. Nat. Prod. 2003, 66, 939.
      (b) Cheng, P.; Ma, Y.; Yao, S.; Zhang, Q.; Wang, E.; Yan, M.; Zhang, X.; Zhang, F.; Chen, J. Bioorg. Med. Chem. Lett. 2007, 17, 5316.
      (c) Zhang, Y.; Ge, H.; Zhao, W.; Dong, H.; Xu, Q.; Li, S.; Li, J.; Zhang, J.; Song, Y.; Tan, R. Angew. Chem., Int. Ed. 2008, 47, 5823.
      (d) Fu, J.; Qin, J.; Zeng, Q.; Huang, Y.; Jin, H.; Zhang, W. Chem. Pharm. Bull. 2010, 58, 1263.
      (e) Zhao, J. H.; Wang, Z. Q.; Zhou, Y.; Zhu, G. N.; Yu, C. M. Chin. J. Org. Chem. 2011, 31, 3031(in Chinese).
      (赵金浩, 王宗成, 周勇, 朱国念, 俞传明, 有机化学, 2011, 31, 3031.)
      (f) Park, H. B.; Kim, Y.-J.; Lee, J. K.; Lee, K. R.; Kwon, H. C. Org. Lett. 2012, 14, 5002.
      (g) Du, W.; Hung, H.; Kuo, P.; Hwang, T.; Shiu, L.; Shiu, K.; Lee, E.; Tai, S.; Wu, T. Org. Lett. 2016, 18, 3042.
      (h) Ma, Y.; Fan, C.; Chin. J. Org. Chem. 2016, 36, 2380(in Chinese).
      (马养民, 范超, 有机化学, 2016, 36, 2380.)

    2. [2]

      Reviews: (a) Roche, S. P.; Porco, Jr., J. Angew. Chem., Int. Ed. 2011, 50, 4068.
      (b) Zhuo, C.; Zhang, W.; You, S. Angew. Chem., Int. Ed. 2012, 51, 12662.
      (c) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570.
      (d) James, M. J.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Chem. Eur. J. 2016, 22, 2856.
      (e) Nemoto, T.; Hamada, Y. Synlett 2016, 2301.
      (f) Wang, H.; Luan, X. Org. Biomol. Chem. 2016, 14, 9451.
      (g) Liang, X.-W.; Chen, X.; Zhang, Z.; You S.-L. Chin. Chem. Lett. 2018, 29, 1212.
      (h) Wang, K.-K.; Du, W.; Zhu, J.; Chen Y.-C. Chin. Chem. Lett. 2017, 28, 512.
      (i) Wu, W.-T.; Zhang, L. M.; You, S.-L. Acta Chim. Sinica 2017, 75, 419(in Chinese).
      (吴文挺, 张立明, 游书力, 化学学报, 2017, 75, 419.)

    3. [3]

      (a) Tyman, J. H. P. Synthetic and Natural Phenol; Elsevier: New York, 1996.
      (b) Rappoport, Z. The Chemistry of Phenols; John Wiley & Sons Ltd.: Chichester, 2003.
      (c) Weber, M.; Weber, M.; KleineBoymann, M. Phenol. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2004.

    4. [4]

      For selected reviews, see: (a) Kündig, E. P.; Rape, A. Top. Organomet. Chem. 2004, 7, 95.
      (b) Quideau, S.; Pouységu, L.; Deffieus, D. Synlett 2008, 467.
      (c) Roche, S. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2011, 50, 4068.
      (d) Zhuo, C. X.; Zhang, W.; You, S. L. Angew. Chem., Int. Ed. 2012, 51, 12662.
      (e) Lü, W. W.; He, X. C.; Shi, M.; Wang, F. J. Chin. J. Org. Chem. 2019, 39, 532(in Chinese).
      (吕雯雯, 贺信淳, 施敏, 王飞军, 有机化学, 2019, 39, 532.)
      (f) Cui, N.; Zhao, Y.; Wang, Y. X. Chin. J. Org. Chem. 2017, 37, 20(in Chinese). (崔娜, 赵宇, 王云侠, 有机化学, 2017, 37, 20.)
      (g) Lin, S. B.; He, X. R.; Meng, J. P.; Gu, H. N.; Zhang, P. Z.; Wu, J. Chin. J. Org. Chem. 2017, 37, 1864(in Chinese).
      (蔺松波, 何兴瑞, 孟金鹏, 顾海宁, 张培志, 吴军, 有机化学, 2017, 37, 1864.)

    5. [5]

      (a) Roche, S. P.; Porco, J., Jr Angew. Chem., Int. Ed. 2011, 50, 4068.
      (b) Zhuo, C.; Zhang, W.; You, S. Angew. Chem., Int. Ed. 2012, 51, 12662.
      (c) Zhuo, C.; Zheng, C.; You, S. Acc. Chem. Res. 2014, 47, 2558.
      (d) Zheng, C.; You, S. Chem. 2016, 1, 830.
      (e) Wu, W.; Zhang, L.; You, S. Chem. Soc. Rev. 2016, 45, 1570.
      (f) Nemoto, T.; Hamada, Y. Synlett 2016, 27, 2301.
      (g) Wang, H.; Luan, X. Org. Biomol. Chem. 2016, 14, 9451.

    6. [6]

      Nemoto, T.; Ishige, Y.; Yoshida, M.; Kohno, Y.; Kanematsu, M.; Hamada, Y. Org. Lett. 2010, 12, 5020.  doi: 10.1021/ol102190s

    7. [7]

      Rousseaux, S.; García-Fortanet, J.; Del Aguila Sanchez, M. A.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 9282.  doi: 10.1021/ja203644q

    8. [8]

      Wu, Q.; Liu, W.; Zhuo, C.; Rong, Z.; Ye, K.; You, S. Angew. Chem., Int. Ed. 2011, 50, 4455.  doi: 10.1002/anie.201100206

    9. [9]

      (a) Nan, J.; Zuo, Z.; Luo, L.; Bai, L.; Zheng, H.; Yuan, Y.; Liu, J.; Luan, X.; Wang, Y. J. Am. Chem. Soc. 2013, 135, 17306.
      (b) Zuo, Z.; Yang, X.; Liu, J.; Nan, J.; Bai, L.; Wang, Y.; Luan, X. J. Org. Chem. 2015, 80, 3349.

    10. [10]

      Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 7607.  doi: 10.1021/ja5034952

    11. [11]

      Kujawa, S.; Best, D.; Burns, D. J.; Lam, H. W. Chem. Eur. J. 2014, 20, 8599.  doi: 10.1002/chem.201403454

    12. [12]

      (a) Zheng, J.; Wang, S.; Zheng, C.; You, S. J. Am. Chem. Soc. 2015, 137, 4880.
      (b) Zheng, C.; Zheng, J.; You, S. ACS Catal. 2016, 6, 262.

    13. [13]

      Gu, S.; Luo, L.; Liu, J.; Bai, L.; Zheng, H.; Wang, Y.; Luan, X. Org. Lett. 2014, 16, 6132.  doi: 10.1021/ol502997d

    14. [14]

      Bai, L.; Yuan, Y.; Liu, J.; Wu, J.; Han, L.; Wang, H.; Wang, Y.; Luan, X. Angew. Chem., Int. Ed. 2016, 55, 6946.  doi: 10.1002/anie.201601570

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    18. [18]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

Metrics
  • PDF Downloads(7)
  • Abstract views(961)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return