Citation: Lü Taoyuze, Zhu Kangning, Liu Bin. Recent Advances of Organic Fluorescent Probes for Detection of Human Serum Albumin[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2786-2795. doi: 10.6023/cjoc201903060 shu

Recent Advances of Organic Fluorescent Probes for Detection of Human Serum Albumin

  • Corresponding author: Liu Bin, bliu@szu.edu.cn
  • Received Date: 27 March 2019
    Revised Date: 26 April 2019
    Available Online: 21 October 2019

    Fund Project: the National Natural Science Foundation of China 21602139Project supported by the National Natural Science Foundation of China (No. 21602139)

Figures(1)

  • Human serum albumin (HSA) is the most abundant protein in human blood plasma, which plays important roles in physiological and biological processes, such as keeping the osmotic pressure and transporting small molecular ligands. The level of HSA in in biological samples especially in blood serum can reveal several health conditions, and thus, quantitative determination of HSA has vital importance for disease diagnosis. In recent years, as the rapid development of fluorescent probe technique, a great number of fluorescent probes have been reported for sensitive and selective detection of HSA. This article summarizes recent reported organic-based fluorescent probes, subsequently carefully describes the chemical structures, sensing mechanisms, spectral features, limit of detection, and binding sites, and moreover, the future developments and prospects for HSA detection by using fluorescent probes have been discussed.
  • 加载中
    1. [1]

      Friedrichs, B. J. M. N.; Research, F. 2010, 41, 382.

    2. [2]

      Kragh-Hansen, U.; Chuang, V. T. G.; Otagiri, M. Biol. Pharm. Bull. 2002, 25, 695.  doi: 10.1248/bpb.25.695

    3. [3]

      Quinlan, G. J.; Martin, G. S.; Evans, T. W. Hepatology 2005, 41, 1211.  doi: 10.1002/hep.20720

    4. [4]

      Viberti, G. C.; Hill, R. D.; Jarrett, R. J.; Argyropoulos, A.; Mahmud, U.; Keen, H. Lancet 1982, 1, 1430.

    5. [5]

      Mogensen, C. E.; Hansen, K. W.; Osterby, R.; Damsgaard, E. M. Diabetes Care 1992, 15, 1192.  doi: 10.2337/diacare.15.9.1192

    6. [6]

      Hoogenberg, K.; Sluiter, W. J.; Dullaart, R. P. F. Acta Endocrinol. 1993, 129, 151.  doi: 10.1530/acta.0.1290151

    7. [7]

      Murch, S. H.; Winyard, P. J.; Koletzko, S.; Wehner, B.; Cheema, H. A.; Risdon, R. A.; Phillips, A. D.; Meadows, N.; Klein, N. J.; Walker-Smith, J. A. Lancet 1996, 347, 1299.  doi: 10.1016/S0140-6736(96)90941-1

    8. [8]

      Li, W.; Chen, D.; Wang, H.; Luo, S.; Dong, L.; Zhang, Y.; Shi, J.; Tong, B.; Dong, Y. ACS Appl. Mater. Interfaces 2015, 7, 26094.  doi: 10.1021/acsami.5b07422

    9. [9]

      Yu, Y.; Huang, Y.; Hu, F.; Jin, Y.; Zhang, G.; Zhang, D.; Zhao, R. Anal. Chem. 2016, 88, 6374.  doi: 10.1021/acs.analchem.6b00774

    10. [10]

      Dockal, M.; Carter, D. C.; Ruker, F. J. Biol. Chem. 1999, 274, 29303.  doi: 10.1074/jbc.274.41.29303

    11. [11]

      Bhattacharya, A. A.; Grune, T.; Curry, S. J. Mol. Biol. 2000, 303, 721.  doi: 10.1006/jmbi.2000.4158

    12. [12]

      Liu, H.; Bao, W.; Ding, H. J.; Jang, J. C.; Zou, G. L. J. Phys. Chem. B 2010, 114, 12938.  doi: 10.1021/jp102053x

    13. [13]

      He, X. M.; Carter, D. C. Nature 1992, 358, 209.  doi: 10.1038/358209a0

    14. [14]

      Doyle, M. J.; Halsall, H. B.; Heineman, W. R. Anal. Chem. 1982, 54, 2318.  doi: 10.1021/ac00250a040

    15. [15]

      Doumas, B. T.; Watson, W. A.; Biggs, H. G. Clin. Chim. Acta 1971, 31, 87  doi: 10.1016/0009-8981(71)90365-2

    16. [16]

      Jiao, C.; Liu, Y.; Lu, W.; Zhang, P.; Wang, Y. Chin. J. Org. Chem. 2019, 39, 591(in Chinese).
       

    17. [17]

      Li, Z.; Huo, Y.; Yang, X.; Ji, S. Chin. J. Org. Chem. 2016, 36, 2317(in Chinese).
       

    18. [18]

      Chen, Z.-Z.; Zhang, N.; Zhang, W.-S.; Tang, B. Chin. J. Anal. Chem. 2006, 1341(in Chinese).  doi: 10.3321/j.issn:0253-3820.2006.09.032

    19. [19]

      Fan, J. L.; Sun, W.; Wang, Z. K.; Peng, X. J.; Li, Y. Q; Cao, J. F. Chem. Commun. 2014, 50, 9573.  doi: 10.1039/C4CC03778B

    20. [20]

      Wang, Y. R.; Feng, L.; Xu, L.; Li, Y.; Wang, D. D.; Hou, J.; Zhou, K.; Jin, Q.; Ge, G. B.; Cui, J. N.; Yang, L. Chem. Commun. 2016, 52, 6064.  doi: 10.1039/C6CC00119J

    21. [21]

      Wang, Y. R.; Feng, L.; Xu, L.; Hou, J.; Jin, Q.; Zhou, N.; Lin, Y.; Cui, J. N.; Ge, G. B. Sens. Actuator, B 2017, 245, 923.  doi: 10.1016/j.snb.2017.02.046

    22. [22]

      Reja, S. I.; Khan, I. A.; Bhalla, V.; Kumar, M. Chem. Commun. 2016, 52, 1182.  doi: 10.1039/C5CC08217J

    23. [23]

      Li, H. D.; Yao, Q. C.; Fan, J. L.; Du, J. J.; Wang, J. Y.; Peng, X. J. Dyes Pigm. 2016, 133, 79.  doi: 10.1016/j.dyepig.2016.05.039

    24. [24]

      Li, P. B.; Wang, Y. R.; Zhang, S. F.; Xu, L.; Wang, G. C.; Cui, J. N. Tetrahedron Lett. 2018, 59, 1390.  doi: 10.1016/j.tetlet.2018.02.065

    25. [25]

      Xu, Y. J.; Su, M. M.; Li, H. L.; Liu, Q. X.; Xu, C.; Yang, Y. S.; Zhu, H. L. Anal. Chim. Acta 2018, 1043, 123.  doi: 10.1016/j.aca.2018.09.010

    26. [26]

      Xu, Y. Q.; Zhang, M.; Li, B. Y.; Wang, W.; Wang, B. Z.; Yang, Y. S.; Zhu, H. L. Talanta 2018, 185, 568.  doi: 10.1016/j.talanta.2018.04.029

    27. [27]

      Liu, Y.; Pang, B.; Bouhenni, R.; Duah, E.; Paruchuri, S.; McDonald, L. Chem. Commun. 2015, 51, 11060.  doi: 10.1039/C5CC03516C

    28. [28]

      Liu, B.; Bi, X. M.; McDonald, L.; Pang, Y.; Liu, D. Q.; Pan, C. J.; Wang, L. Sens. Actuator B-Chem. 2016, 236, 668.  doi: 10.1016/j.snb.2016.06.056

    29. [29]

      Luo, Z. J.; Liu, B.; Zhu, K. N.; Huang, Y. Y.; Pan, C. J.; Wang, B. F.; Wang, L. Dyes Pigm. 2018, 152, 60.  doi: 10.1016/j.dyepig.2018.01.033

    30. [30]

      Liao, C. Y.; Li, F. F.; Huang, S. S.; Zheng, B. Z.; Du, J.; Xiao, D. Biosens. Bioelectron. 2016, 86, 489.  doi: 10.1016/j.bios.2016.07.002

    31. [31]

      Huang, S. S.; Li, F. F.; Liao, C. Y.; Zheng, B. Z.; Du, J. A.; Xiao, D. Talanta 2017, 170, 562.  doi: 10.1016/j.talanta.2017.01.034

    32. [32]

      Er, J. C.; Tang, M. K.; Chia, C. G.; Liew, H.; Vendrell, M.; Chang, Y. T. Chem. Sci. 2013, 4, 2168.  doi: 10.1039/c3sc22166k

    33. [33]

      Hong, Y. N.; Feng, C.; Yu, Y.; Liu, J. Z.; Lam, J. W. Y.; Luo, K. Q.; Tang, B. Z. Anal. Chem. 2010, 82, 7035.  doi: 10.1021/ac1018028

    34. [34]

      Wang, Z. L.; Ma, K.; Xu, B.; Li, X.; Tian, W. J. Sci. China:Chem. 2013, 56, 1234.  doi: 10.1007/s11426-013-4917-6

    35. [35]

      Li, W. Y.; Chen, D. D.; Wang, H.; Luo, S. S.; Dong, L. C.; Zhang, Y. H.; Shi, J. B.; Tong, B.; Dong, Y. P. ACS Appl. Mater. Interfaces 2015, 7, 26094.  doi: 10.1021/acsami.5b07422

    36. [36]

      Li, J. Z.; Wu, J. D.; Cui, F. C.; Zhao, X.; Li, Y. Q.; Lin, Y.; Li, Y.; Hu, J.; Ju, Y. Sens. Actuator, B 2017, 243, 831.  doi: 10.1016/j.snb.2016.12.054

    37. [37]

      Shen, P.; Hua, J. Y.; Jin, H. D.; Du, J. Y.; Liu, C. L.; Yang, W.; Gao, Q. Y.; Luo, H. J.; Liu, Y.; Yang, C. Y. Sens. Actuator, B 2017, 247, 587.  doi: 10.1016/j.snb.2017.03.051

    38. [38]

      Rajasekhar, K.; Achar, C. J.; Govindaraju, T. Org. Biomol. Chem. 2017, 15, 1584.  doi: 10.1039/C6OB02760A

    39. [39]

      Chakraborty, G.; Ray, A. K.; Singh, P. K.; Pal, H. Chem. Commun. 2018, 54, 8383.  doi: 10.1039/C8CC05058A

    40. [40]

      Wu, Y. Y.; Yu, W. T.; Hou, T. C.; Liu, T. K.; Huang, C. L.; Chen, I. C.; Tan, K. T. Chem. Commun. 2014, 50, 11507.  doi: 10.1039/C4CC04236K

    41. [41]

      Dey, N.; Maji, B.; Bhattacharya, S. Chem.-Asian J. 2018, 13, 664.  doi: 10.1002/asia.201701795

    42. [42]

      Schluter, F.; Riehemann, K.; Kehr, N. S.; Quici, S.; Daniliuc, C. G.; Rizzo, F. Chem. Commun. 2018, 54, 642.  doi: 10.1039/C7CC08761F

    43. [43]

      Thomas, S. W.; Joly, G. D.; Swager, T. M. J. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    44. [44]

      Anees, P.; Sreejith, S.; Ajayaghosh, A. J. Am. Chem. Soc. 2014, 136, 13233.  doi: 10.1021/ja503850b

    45. [45]

      Fan, X. P.; He, Q. Y.; Sun, S. G.; Li, H. J.; Pei, Y. X.; Xu, Y. Q. Chem. Commun. 2016, 52, 1178.  doi: 10.1039/C5CC08154H

    46. [46]

      Yu, Y.; Huang, Y. Y.; Hu, F.; Jin, Y. L.; Zhang, G. X.; Zhang, D. Q.; Zhao, R. Anal. Chem. 2016, 88, 6374.  doi: 10.1021/acs.analchem.6b00774

    47. [47]

      Gao, T.; Yang, S. Q.; Cao, X. Z.; Dong, J.; Zhao, N.; Ge, P.; Zeng, W. B.; Cheng, Z. Anal. Chem. 2017, 89, 10085.  doi: 10.1021/acs.analchem.7b02923

    48. [48]

      Fan, J. M.; Zheng, D. M.; Huang, X. Y.; Ding, L. P.; Xin, Y. H.; Fang, Y. Sens. Actuator, B 2018, 263, 336.  doi: 10.1016/j.snb.2018.02.132

    49. [49]

      Samanta, S.; Halder, S.; Das, G. Anal. Chem. 2018, 90, 7561.  doi: 10.1021/acs.analchem.8b01181

    50. [50]

      Singh, P.; Mittal, L. S.; Kaur, S.; Kaur, S.; Bhargava, G.; Kumar, S. Sens. Actuator, B 2018, 255, 478.  doi: 10.1016/j.snb.2017.08.072

    51. [51]

      Liyasova, M. S.; Schopfer, L. M.; Oksana, L. J. B. P. 2010, 79, 784.

    52. [52]

      Sun, Q.; Wang, W. S.; Chen, Z. Y.; Yao, Y. H.; Zhang, W. B.; Duan, L. P.; Qian, J. H. Chem. Commun. 2017, 53, 6432.  doi: 10.1039/C7CC03587J

    53. [53]

      Jin, Q.; Feng, L.; Zhang, S. J.; Wang, D. D.; Wang, F. J.; Zhang, Y.; Cui, J. N.; Guo, W. Z.; Ge, G. B.; Yang, L. Anal. Chem. 2017, 89, 9884.  doi: 10.1021/acs.analchem.7b01975

    54. [54]

      Ge, G. B.; Feng, L.; Jin, Q.; Wang, Y. R.; Liu, Z. M.; Zhu, X. Y.; Wang, P.; Hou, J.; Cui, J. N.; Yang, L. Anal. Chim. Acta 2017, 989, 71.  doi: 10.1016/j.aca.2017.07.048

  • 加载中
    1. [1]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    11. [11]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    12. [12]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    13. [13]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    14. [14]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    15. [15]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

Metrics
  • PDF Downloads(27)
  • Abstract views(2494)
  • HTML views(496)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return