Citation: Shi Xiaonan, Tian Miaomiao, Wang Muhua, Zhang Xinying, Fan Xuesen. Regioselective Synthesis of Substituted Pyrazoles via[3+2]/[2+3] Cyclization of Saturated Ketone with Hydrazine/Aldehyde Hydrazone[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1630-1641. doi: 10.6023/cjoc201903046 shu

Regioselective Synthesis of Substituted Pyrazoles via[3+2]/[2+3] Cyclization of Saturated Ketone with Hydrazine/Aldehyde Hydrazone

  • Corresponding author: Fan Xuesen, xuesen.fan@htu.cn
  • Received Date: 23 March 2019
    Revised Date: 14 May 2019
    Available Online: 21 June 2019

    Fund Project: the Plan for Scientific Innovation Talents of Henan Province 184200510012Project supported by the National Natural Science Foundation of China (No. 21572047) and the Plan for Scientific Innovation Talents of Henan Province (No. 184200510012)the National Natural Science Foundation of China 21572047

Figures(7)

  • A highly convenient and regioselective synthesis of 1, 3-disubstituted pyrazoles or 1, 3, 4-trisubstituted pyrazoles from Cu(Ⅱ)-catalyzed cascade reactions of saturated ketones with hydrazines or aldehyde hydrazones is presented. Mechanistically, the formation of 1, 3-disubstituted pyrazoles involves the in situ generation of an enone intermediate followed by its[3+2] annulations with hydrazine. On the other hand, the formation of 1, 3, 4-trisubstituted pyrazoles is believed to go through a cascade process including enone formation and its subsequent[2+3] annulation with aldehyde hydrazone. Compared with literature methods, the notable features of the protocol include simple starting materials, general and broad substrate scope, high regioselectivity, good efficiency and excellent atom-economy.
  • 加载中
    1. [1]

      (a) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.
      (b) Dadiboyena, S.; Nefzi, A. Eur. J. Med. Chem. 2011, 46, 5258.
      (c) Wen, J.-J.; Zhu Y.; Zhan, Z.-P. Asian J. Org. Chem. 2012, 1, 108.
      (d) Li, M.; Zhao, B.-X. Eur. J. Med. Chem. 2014, 85, 311.
      (e) Küçükgüzel, Ş. G.; Şenkardeş, S. Eur. J. Med. Chem. 2015, 97, 786.
      (f) Hughes, D. L. Org. Process Res. Dev. 2017, 21, 430.
      (g) Faria, J. V.; Vegi, P. F.; Miguita, A. G. C.; dos Santos, M. S.; Boechat, N.; Bernardino, A. M. R. Bioorg. Med. Chem. 2017, 25, 5891.

    2. [2]

      (a) Schmidt, A.; Dreger, A. Curr. Org. Chem. 2011, 15, 2897.
      (b) Haydl, A. M.; Xu, K.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 7149.
      (c) Fang, Z.; Liu, J.; Qiao, Y. Chin. J. Org. Chem. 2018, 38, 1985 (in Chinese).
      (房智兴, 刘巨艳, 乔艳红, 有机化学, 2018, 38, 1985.)
      (d) Li, Y.; Dong, C.-E. Chin. Chem. Lett. 2015, 26, 623.
      (e) Yu, X.; Zhang, J. Chem.-Eur. J. 2012, 18, 12945.

    3. [3]

      (a) Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2014, 79, 10170.
      (b) Sar, D.; Bag, R.; Yashmeen, A.; Bag, S. S.; Punniyamurthy, T. Org. Lett. 2015, 17, 5308.
      (c) Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.-J. J. Org. Chem. 2015, 80, 8217.
      (d) Ding, Y.; Zhang, T.; Chen, Q.-Y.; Zhu, C. Org. Lett. 2016, 18, 4206 and references cited therein.
      (e) Muzalevskiy, V. M.; Rulev, A. Y.; Romanov, A. R.; Kondrashov, E. V.; Ushakov, I. A.; Chertkov, V. A.; Nenajdenko, V. G. J. Org. Chem. 2017, 82, 7200.
      (f) Černuchová, P.; Vo-Thanh, G.; Milata, V.; Loupy, A.; Jantová, S.; Theiszová, M. Tetrahedron 2005, 61, 5379.

    4. [4]

      Chen, Z.; Zheng, Y.; Ma, J.-A. Angew. Chem., Int. Ed. 2017, 56, 4569.  doi: 10.1002/anie.201700955

    5. [5]

      (a) Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. Org. Lett. 2013, 15, 5967.
      (b) Shu, W.-M.; Zheng, K.-L.; Ma, J.-R.; Sun, H.-Y.; Wang, M.; Wu, A.-X. Org. Lett. 2015, 17, 1914.
      (c) Tu, Y.; Zhang, Z.; Wang, T.; Ke, J.; Zhao, J. Org. Lett. 2017, 19, 3466.
      (d) Harigae, R.; Moriyama, K.; Togo, H. J. Org. Chem. 2014, 79, 2049.

    6. [6]

      (a) Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78, 3636.
      (b) Fan, X.-W.; Lei, T.; Zhou, C.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Org. Chem. 2016, 81, 7127.
      (c) Pünner, F.; Sohtome, Y.; Sodeoka, M. Chem. Commun. 2016, 52, 14093.
      (d) Yang, Y.; Hu, Z.-L.; Li, R.-H.; Chen, Y.-H.; Zhan, Z.-P. Org. Biomol. Chem. 2018, 16, 197.

    7. [7]

      Li, F.; Wang, J.; Pei, W.; Li, H.; Zhang, H.; Song, M.; Guo, L.; Zhang, A.; Liu, L. Tetrahedron Lett. 2017, 58, 4344.  doi: 10.1016/j.tetlet.2017.09.086

    8. [8]

      (a) Diao, T.; Pun, D.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8205.
      (b) Pun, D.; Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8213.

    9. [9]

      (a) Shang, Y.; Jie, X.; Zhou, H.; Hu, P.; Huang, S.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 1299.
      (b) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. ACS Catal. 2014, 4, 4485.
      (c) Jie, X.; Shang, Y.; Zhang, X.; Su, W. J. Am. Chem. Soc. 2016, 138, 5623.
      (d) Zhan, J.-L.; Wu, M.-W.; Chen, F.; Han, B. J. Org. Chem. 2016, 81, 11994.
      (e) Guo, W.; Liu, D.; Liao, J.; Ji, F.; Wu, W.; Jiang, H. Org. Chem. Front. 2017, 4, 1107.

    10. [10]

      (a) Wang, Z.; Chen, G.; Zhang, X.; Fan, X. Org. Chem. Front. 2017, 4, 612.
      (b) Tian, M.; Shi, X.; Zhang, X.; Fan, X. J. Org. Chem. 2017, 82, 7363.
      (c) Chen, G.; Wang, Z.; Zhang, X.; Fan, X. J. Org. Chem. 2017, 82, 11230.

    11. [11]

      CCDC 1857401 (3f) contains the crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    12. [12]

      (a) Li, H.; Liu, C.; Zhang, Y.; Sun, Y.; Wang, B.; Liu, W. Org. Lett. 2015, 17, 932.
      (b) Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7790.
      (c) Sun, Z.; Khan, J.; Makowska-Grzyska, M.; Zhang, M.; Cho, J. H.; Suebsuwong, C.; Vo, P.; Gollapalli, D. R.; Kim, Y.; Joachimiak, A.; Hedstrom, L.; Cuny, G. D. J. Med. Chem. 2014, 57, 10544.

    13. [13]

      Voronin, V. V.; Ledovskaya, M. S.; Gordeev, E. G.; Rodygin, K. S.; Ananikov, V. P. J. Org. Chem. 2018, 83, 3819.  doi: 10.1021/acs.joc.8b00155

    14. [14]

      Tang, X.; Huang, L.; Yang, J.; Xu, Y.; Wu, W.; Jiang, H. Chem. Commun. 2014, 50, 14793.  doi: 10.1039/C4CC06747A

    15. [15]

      Shan, G.; Liu, P.; Rao, Y. Org. Lett. 2011, 13, 1746.  doi: 10.1021/ol2002682

    16. [16]

      Zhang G.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed. 2013, 52, 2559.  doi: 10.1002/anie.v52.9

    17. [17]

      Comas-Barcel, J.; Foster, R. S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J. P. A. Chem.-Eur. J. 2015, 21, 3257.  doi: 10.1002/chem.201406118

  • 加载中
    1. [1]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    4. [4]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    5. [5]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    6. [6]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    7. [7]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    8. [8]

      Chen-Chang CuiShao-Qing ShiLu-Yao WangFeng LinMan-Su TuWen-Juan HaoBo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541

    9. [9]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    10. [10]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    13. [13]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    14. [14]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    15. [15]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    16. [16]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    19. [19]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    20. [20]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

Metrics
  • PDF Downloads(5)
  • Abstract views(696)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return