Citation: Li Shuailong, Li Zhuangxing, You Cai, Lv Hui, Zhang Xumu. Recent Advances in Asymmetric Hydroformylation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1568-1582. doi: 10.6023/cjoc201903044 shu

Recent Advances in Asymmetric Hydroformylation

  • Corresponding author: Lv Hui, huilv@whu.edu.cn
  • Received Date: 22 March 2019
    Revised Date: 23 April 2019
    Available Online: 6 June 2019

    Fund Project: the Natural Science Foundation of Hubei Province 2018CFB430Project supported by the National Natural Science Foundation of China (No. 21871212) and the Natural Science Foundation of Hubei Province (No. 2018CFB430)the National Natural Science Foundation of China 21871212

Figures(7)

  • Asymmetric hydroformylation is one of the most important reactions for preparation of chiral aldehydes from alkenes. Recently, significant progress has been made in this field and a series of new ligands have been developed. Asymmetric hydroformylation of several important alkenes has been achieved, offering efficient and concise methods for the synthesis of chiral aldehydes. In this review, the achievements of asymmetric hydroformylation of typical alkenes and the development of ligands for asymmetric hydroformylation are summarized.
  • 加载中
    1. [1]

    2. [2]

      Naqvi, S. Oxo Alcohols. Process Economics Program Report 21E, SRI Consulting, Menlo Park, CA, 2010.

    3. [3]

      Botteghi, C.; Consiglio, G.; Pino, P. Chimia 1972, 26, 141.

    4. [4]

      (a) Ogata, I.; Ikeda, Y. Chem. Lett. 1972, 487.
      (b) Tanaka, M.; Watanabe, Y.; Mitsudo, T.-A.; Yamamoto, K.; Takeeami, Y. Chem. Lett. 1972, 483.

    5. [5]

      Salomon, C.; Consiglio, G.; Botteghi, C.; Pino, P. Chimia 1973, 27, 215.

    6. [6]

      (a) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033.
      (b) Nozaki, K.; Nanno, T.; Takaya, H. J. Organomet. Chem. 1997, 527, 103.
      (c) Lambers-Verstappen, M. M. H.; de Vries, J. G. Adv. Synth. Catal. 2003, 345, 478.
      (d) Tanaka, R.; Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 8671.

    7. [7]

      (a) Yan, Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198.
      (b) Zhang, X.; Cao, B.; Yan, Y.; Yu, S.; Ji, B. M.; Zhang, X. Chem.-Eur. J. 2010, 16, 871.
      (c) Zhang, X.; Cao, B.; Yu, S.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 4047.
      (d) Wei, B.; Chen, C.; You, C.; Lv, H.; Zhang, X. Org. Chem. Front. 2017, 4, 288.

    8. [8]

      (a) Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.; Clarke, M. L. Angew. Chem., Int. Ed. 2012, 51, 2477.
      (b) Noonan, G. M.; Cobley, C. J.; Mahoney, T.; Clarke, M. L. Chem. Commun. 2014, 50, 1475.

    9. [9]

      (a) Babin, J. E.; Whiteker, G. T. US 5360938, 1993 [Chem. Abstr. 1995, 122, 186609].
      (b) Buisman, G. J. H.; Vos, E. J.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 1995, 409.

    10. [10]

      (a) Cobley, C. J.; Klosin, J.; Qin, C.; Whiteker, G. T. Org. Lett. 2004, 6, 3277.
      (b) Cobley, C. J.; Gardner, K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.; Zanotti-Gerosa, A. J. Org. Chem. 2004, 69, 4031.

    11. [11]

      (a) Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. A. J. Am. Chem. Soc. 2005, 127, 5040.
      (b) Watkins, A. L.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 10306.
      (c) Adint, T. T.; Landis, C. R. J. Am. Chem. Soc. 2014, 136, 7943.

    12. [12]

      Axtell, A. T.; Cobley, C. J.; Klosin, J.; Whiteker, G. T.; ZanottiGerosa, A.; Abboud, K. A. Angew. Chem., Int. Ed. 2005, 44, 4.  doi: 10.1002/anie.200462726

    13. [13]

      Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem.-Eur. J. 2014, 20, 4357.  doi: 10.1002/chem.201304684

    14. [14]

      Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5411.  doi: 10.1073/pnas.0307101101

    15. [15]

      (a) Kuil, M.; Goudriaan, P. E.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun. 2006, 4679.
      (b) Bellini, R.; Reek, J. N. H. Chem.-Eur. J. 2012, 18, 13510.

    16. [16]

      Breit, B.; Breuninger, D. J. Am. Chem. Soc. 2004, 126, 10244.  doi: 10.1021/ja0467364

    17. [17]

      Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757.  doi: 10.1021/ja107433h

    18. [18]

      (a) Zhao, B.; Peng, X.; Wang, Z.; Xia, C.; Ding, K. Chem.-Eur. J. 2008, 14, 7847.
      (b) Peng, X.; Wang, Z.; Xia, C.; Ding, K. Tetrahedron Lett. 2008, 49, 4862.

    19. [19]

      Jouffroy, M.; Gramage-Doria, R.; Armspach, D.; Sémeril, D.; Oberhauser, W.; Matt, D.; Toupet, L. Angew. Chem., Int. Ed. 2014, 53, 3937.  doi: 10.1002/anie.201311291

    20. [20]

      Thomas, P. J.; Axtell, A. T.; Klosin, J.; Peng, W.; Rand, C. L.; Clark, T. P.; Landis, C. R.; Abboud, K. A. Org. Lett. 2007, 9, 2665.  doi: 10.1021/ol070900l

    21. [21]

      Tan, R. C.; Zheng, X.; Qu, B.; Sarer, C. A.; Fandrick, K. R.; Senanayake, C. H.; Zhang, X. M. Org. Lett. 2016, 18, 3346.  doi: 10.1021/acs.orglett.6b01452

    22. [22]

      Schmitz, C.; Holthusen, K.; Leitner, W.; Franció, G. ACS Catal. 2016, 6, 1584.  doi: 10.1021/acscatal.5b02846

    23. [23]

      Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.; Schwarz, G. J.; Wills, M. Angew. Chem., Int. Ed. 2000, 39, 4106.  doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Zhang, X.; Cao, B.; Yu, S.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 4047.  doi: 10.1002/anie.201000955

    25. [25]

      Yu, Z.; Eno, M. S.; Annis, A. H.; Morken, J. P. Org. Lett. 2015, 17, 3264.  doi: 10.1021/acs.orglett.5b01421

    26. [26]

      Dingwall, P.; Fuentes, J. A.; Crawford, L.; Slawin, A. M. Z.; Bühl, M.; Clarke, M. L. J. Am. Chem. Soc. 2017, 139, 15921.  doi: 10.1021/jacs.7b09164

    27. [27]

      Iu, L.; Fuentes, J. A.; Janka, M. E.; Fontenot, K. J.; Clarke, M. L. Angew. Chem., Int. Ed. 2019, 58, 2120.  doi: 10.1002/anie.v58.7

    28. [28]

      Horiuchi, T.; Ohta, T.; Shirakawa. E.; Nozaki, K.; Takaya, H. J. Org. Chem. 1997, 62, 4285.  doi: 10.1021/jo9624051

    29. [29]

      (a) Diéguez, M.; Pamies, O.; Claver, C. Chem. Commun. 2005, 1221.
      (b) Gual, A.; Godard, C.; Castillón, S.; Claver, C. Adv. Synth. Catal. 2010, 352, 463.

    30. [30]

      (a) Chikkali, S. H.; Bellini, R.; Berthon-Gelloz, G.; van der Vlugt, J. I.; de Bruin, B.; Reek, J. N. H. Chem. Commun. 2010, 46, 1244.
      (b) Chikkali, S. H.; Bellini, R.; de Bruin, B.; van der Vlugt, J. I.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 6607.

    31. [31]

      Rovira, L.; Vaquero, M.; Vidal-Ferran, A. J. Org. Chem. 2015, 80, 10397.  doi: 10.1021/acs.joc.5b01805

    32. [32]

      Watkins, A. L.; Hashiguchi, B. G.; Landis, C. R. Org. Lett. 2008, 10, 4553.  doi: 10.1021/ol801723a

    33. [33]

      Fuentes, J. A.; Pittaway, R.; Clarke, M. L. Chem.-Eur. J. 2015, 21, 10645.  doi: 10.1002/chem.v21.30

    34. [34]

      Sherill, W. M.; Rubin, M. J. Am. Chem. Soc. 2008, 130, 13804.  doi: 10.1021/ja805059f

    35. [35]

      You, C.; Wei, B.; Li, X.; Yang, Y.; Liu, Y.; Lv, H.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 6511.  doi: 10.1002/anie.201601478

    36. [36]

      Sakai, N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem. Commun. 1994, 395.
       

    37. [37]

      (a) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 14027.
      (b) Abrams, M. L.; Foarta, F.; Landis, C. R. J. Am. Chem. Soc. 2014, 136, 14583.

    38. [38]

      Clemens, A. J. L.; Burke, S. D. J. Org. Chem. 2012, 77, 2983.  doi: 10.1021/jo300025t

    39. [39]

      (a) Worthy, A. M.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757.
      (b) Joe, C. L.; Blaisdell, T. P.; Geoghan, A. F.; Tan, K. L. J. Am. Chem. Soc. 2014, 136, 8556.

    40. [40]

      Gadzikwa, T.; Bellini, R.; Dekker, H. L.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 2860.  doi: 10.1021/ja211455j

    41. [41]

      You, C.; Li, X.; Yang, Y.; Yang, Y.-S.; Tan, X.; Li, S.; Wei, B.; Lv, H.; Chung, L.-W.; Zhang, X. Nat. Commun. 2018, 9, 2045.  doi: 10.1038/s41467-018-04277-7

    42. [42]

      Deng, Y.; Wang, H.; Sun, Y.; Wang, X. ACS Catal. 2015, 5, 6828.  doi: 10.1021/acscatal.5b01300

    43. [43]

      Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277.  doi: 10.1016/0022-328X(88)80383-8

    44. [44]

      Consiglio, G.; Roncetti, L. Chirality 1991, 3, 341.  doi: 10.1002/(ISSN)1520-636X

    45. [45]

      Ojima, I.; Takai, M.; Takahashi, T. WO 078766, 2004 [Chem. Abstr. 2004, 141, 260889].

    46. [46]

      You, C.; Li, S.; Li, X.; Lan, J.; Yang, Y.; Chung, L.-W.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4977.  doi: 10.1021/jacs.8b00275

    47. [47]

      Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.  doi: 10.1021/ja2092689

    48. [48]

      Zheng, X.; Cao, B.; Liu, T.; Zhang, X. Adv. Synth. Catal. 2013, 355, 679.  doi: 10.1002/adsc.201200960

    49. [49]

      Gladiali, S.; Pinna, L. Tetrahedron:Asymmetry 1990, 1, 693.  doi: 10.1016/S0957-4166(00)82375-7

    50. [50]

      Lee, C. W.; Alper, H. J. Org. Chem. 1995, 60, 499.  doi: 10.1021/jo00108a007

    51. [51]

      Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429.  doi: 10.1021/jo400115r

    52. [52]

      Fanfoni, L.; Diab, L.; Smejkal, T.; Breit, B. Chimia 2014, 68, 371.  doi: 10.2533/chimia.2014.371

    53. [53]

      Eshon, J.; Foarta, F.; Landis, C. R.; Schomaker, J. M. J. Org. Chem. 2018, 83, 10207.  doi: 10.1021/acs.joc.8b01431

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    15. [15]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(64)
  • Abstract views(2228)
  • HTML views(503)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return