Citation: Shi Xianghui, Liu Zhizhou, Cheng Jianhua. Research Progress of Molecular Alkaline-Earth Metal Hydrides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1557-1567. doi: 10.6023/cjoc201903043 shu

Research Progress of Molecular Alkaline-Earth Metal Hydrides

  • Corresponding author: Cheng Jianhua, jhcheng@ciac.ac.cn
  • Received Date: 21 March 2019
    Revised Date: 23 April 2019
    Available Online: 6 June 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672202) and the "Hundred Talent Program" of Chinese Academy of Sciencesthe National Natural Science Foundation of China 21672202

Figures(28)

  • Alkaline-earth metals continue to receive growing interest, as they are used as low-cost and non-toxic alternatives to transition-metals in various organic transformations. As ionic character and bond lengths increase along the row in the order Mg2+<Ca2+<Sr2+<Ba2+, bond energies decrease along the same row, the corresponding metal hydrides are apt to the formation of insoluble metal hydrides[AeH2] (Ae=Mg, Ca, Sr, Ba) through Schlenk equilibrium in solution. Recently, a series of alkaline-earth metal hydrides stabilized by suitable ligands were discovered and characterized, and stoichiometric and catalytic reactions with small molecules were studied as well. In this paper, the recent progress in molecular alkaline-earth metal hydrides is reviewed.
  • 加载中
    1. [1]

      (a) Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. Angew. Chem., Int. Ed. 2016, 55, 10562.
      (b) Perera, L. C.; Raymond, O.; Henderson, W.; Brothers, P. J.; Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264.

    2. [2]

      Shannon, R. D. Acta Crystallogr. A 1976, 32, 751.  doi: 10.1107/S0567739476001551

    3. [3]

      Schlenk, W.; Schlenk, W. Jr. Ber. Dtsch. Chem. Ges. B 1929, 62, 920.  doi: 10.1002/cber.19290620422

    4. [4]

      (a) Gallagher, D. J.; Henderson, K. W.; Kennedy, A. R.; O'Hara, C. T.; Mulvey, R. E.; Rowlings, R. B. Chem. Commun. 2002, 376.
      (b) Andrikopoulos, P. C.; Armstrong, D. R.; Kennedy, A. R.; Mulvey, R. E.; O'Hara, C. T.; Rowlings, R. B. Eur. J. Inorg. Chem. 2003, 3354.

    5. [5]

      Mukherjee, D.; Okuda, J. Angew. Chem., Int. Ed. 2018, 57, 1458.  doi: 10.1002/anie.v57.6

    6. [6]

      Arrowsmith, M.; Hill, M. S.; MacDougall, D. J.; Mahon, M. F. Angew. Chem., Int. Ed. 2009, 48, 4013.  doi: 10.1002/anie.v48:22

    7. [7]

      Lemmerz, L. E.; Mukherjee, D.; Spaniol, T. P.; Wong, A.; Ménard, G.; Maron, L.; Okuda, J. Chem. Commun. 2019, 55, 3199.  doi: 10.1039/C9CC00490D

    8. [8]

      (a) Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079.
      (b) Spielmann, J.; Piesik, D. F. J.; Harder, S. Chem. Eur. J. 2010, 16, 8307.
      (c) Lalrempuia, R.; Kefalidis, C. E.; Bonyhady, S. J.; Schwarze, B.; Maron, L.; Stasch, A.; Jones, C. J. Am. Chem. Soc. 2015, 137, 8944.

    9. [9]

    10. [10]

      Anker, M. D.; Hill, M. S.; Lowe, J. P.; Mahon, M. F. Angew. Chem., Int. Ed. 2015, 54, 10009.  doi: 10.1002/anie.201505851

    11. [11]

      (a) Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. Chem. Eur. J. 2010, 16, 938.
      (b) Arrowsmith, M.; Maitland, B.; Kociok-Kohn, G.; Stasch, A.; Jones, C.; Hill, M. S. Inorg. Chem. 2014, 53, 10543.
      (c) Lalrempuia, R.; Stasch, A.; Jones, C. Chem. Asian J. 2015, 10, 447.
      (d) Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Chem. Eur. J. 2015, 21, 11330.
      (e) Xie, H.; Hua X.; Liu, B.; Wu C.; Cui, D. J. Organomet. Chem. 2015, 798, 335.
      (f) Rauch, M.; Ruccolo, S.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 13264.

    12. [12]

      Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.  doi: 10.1021/jacs.7b10776

    13. [13]

      (a) Langer, J.; Maitland, B.; Grams, S.; Ciucka, A.; Pahl, J.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 5021.
      (b) Martin, D.; Beckerle, K.; Schnitzler, S.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2015, 54, 4115.

    14. [14]

      Harder, S.; Brettar, J. Angew. Chem., Int. Ed. 2006, 45, 3474.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      (a) Spielmann, J.; Harder, S. Chem. Eur. J. 2007, 13, 8928.
      (b)Harder, S. Chem. Commun. 2012, 48, 11165.

    16. [16]

      Spielmann, J.; Buch, F.; Harder, S. Angew. Chem., Int. Ed. 2008, 47, 9434.  doi: 10.1002/anie.v47:49

    17. [17]

      Intemann, J.; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem.-Eur. J. 2015, 21, 11452.  doi: 10.1002/chem.201501072

    18. [18]

      Anker, M. D.; Kefalidis, C. E.; Yang, Y.; Fang, J.; Hill, M. S.; Mahon, M. F.; Maron, L. J. Am. Chem. Soc. 2017, 139, 10036.  doi: 10.1021/jacs.7b04926

    19. [19]

      Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Science 2017, 358, 1168.  doi: 10.1126/science.aao5923

    20. [20]

      Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Science 2018, 361, 912.  doi: 10.1126/science.aau0839

    21. [21]

      Wilson, A. S. S.; Dinoi, C.; Hill, M. S.; Mahon, M. F.; Maron, L. Angew. Chem., Int. Ed. 2018, 57, 15500.  doi: 10.1002/anie.201809833

    22. [22]

      (a) Causero, A.; Ballmann, G.; Pahl, J.; Zijlstra, H.; Farber, C.; Harder, S. Organometallics 2016, 35, 3350.
      (b) Causero, A.; Elsen, H.; Pahl, J.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 6906.
      (c) Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; Proft, F. D.; Harder, S. Nat. Cat. 2018, 1, 40.

    23. [23]

      (a) Jochmann, P.; Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 4452.
      (b) Leich, V.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2015, 54, 4927.
      (c) Leich, V.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2016, 55, 4794.
      (d) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2017, 56, 12367.

    24. [24]

      Maitland, B.; Wiesinger, M.; Langer, J.; Ballmann, G.; Pahl, J.; Elsen, H.; Farber, C.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 11880.  doi: 10.1002/anie.201706786

    25. [25]

      De Bruin-Dickason, C. N.; Sutcliffe, T.; Lamsfus, C. A.; Deacon, G. B.; Maron, L.; Jones, C. Chem. Commun., 2018, 54, 786.  doi: 10.1039/C7CC09362D

    26. [26]

      Mukherjee, D.; Höllerhage, T.; Leich, V.; Spaniol, T. P.; Englert, U.; Maron, L.; Okuda, J. J. Am. Chem. Soc. 2018, 140, 3403.  doi: 10.1021/jacs.7b13796

    27. [27]

      R sch, B.; Gentner, T. X.; Elsen, H.; Fischer, C. A.; Langer, J.; Wiesinger, M.; Harder, S. Angew. Chem., Int. Ed. 2019, 58, 5396.  doi: 10.1002/anie.201901548

    28. [28]

      Shi, X.; Hou, C.; Zhou, C.; Song, Y.; Cheng, J. Angew. Chem., Int. Ed. 2017, 56, 16650.  doi: 10.1002/anie.201709344

    29. [29]

      Wiesinger, M.; Maitland, B.; Farber, C.; Ballmann, G.; Fischer, C.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2017, 56, 16654.  doi: 10.1002/anie.201709771

    30. [30]

      Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Angew. Chem., Int. Ed. 2019, 58. 4356.  doi: 10.1002/anie.201814733

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    5. [5]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(18)
  • Abstract views(1375)
  • HTML views(325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return