Citation: Wang Zhao, Hao Lingyun, Zhang Xiaojuan, Sheng Ruilong. Advances of "Click" Reaction Approach in Glycopolypeptide Synthesis[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2379-2391. doi: 10.6023/cjoc201903038 shu

Advances of "Click" Reaction Approach in Glycopolypeptide Synthesis

  • Corresponding author: Sheng Ruilong, ruilong.sheng@staff.uma.pt
  • Received Date: 21 March 2019
    Revised Date: 19 April 2019
    Available Online: 6 September 2019

    Fund Project: the Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM M1420-01-0145-FEDER-000008the Fundação para a Ciência e a Tecnologia PEst-OE/QUI/ UI0674/2019the National Natural Science Foundation of China (No. 21372251), the Research Initiation Fund for High-level Talents of Jinling University of Science and Technology (No. jit-b-201828), the Fundação para a Ciência e a Tecnologia (No. PEst-OE/QUI/ UI0674/2019), the Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (No. M1420-01-0145-FEDER-000008), and the Sub Topic 2017-ISG-003 of Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (No. M1420-01-0145-FEDER-000005)the National Natural Science Foundation of China 21372251the Research Initiation Fund for High-level Talents of Jinling University of Science and Technology jit-b-201828

Figures(15)

  • Synthetic glycopolypeptides, as analogues of natural glycoproteins, are an emerging class of bioinspired polymers with excellent biocompatibility. They can mimic the structure and functions of natural glycoproteins, and show great potential for biological applications, such as biomolecular recognition, drug/gene delivery, cell adhesion and targeting, as well as cell culture and tissue engineering. Nevertheless, the efficient and lab/pilot scale preparation of well-defined and tunable glycopolypeptides with complex polymer structures, has been a challenging field until now. The fast development of "Click" chemistry/reaction offers versatile and powerful tools for the synthesis of glycopolypeptides. The state of arts for the development of new "Click" synthetic strategies and methods in the preparation of glycopolypeptides, mainly including post-polymerization glycosylation of synthetic polypeptides and ring-opening polymerization of glycosylated N-carboxyanhydride (glyco-NCA) is reviewed. The pros and cons of current developments for the synthesis of glycopolypeptide analogues and their future perspectives are also stated and discussed.
  • 加载中
    1. [1]

      Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.  doi: 10.1126/science.1059820

    2. [2]

      Helenius, A.; Aebi, M. Science 2001, 291, 2364.  doi: 10.1126/science.291.5512.2364

    3. [3]

      Miura, Y. Polym. J. 2012, 44, 679.  doi: 10.1038/pj.2012.4

    4. [4]

      Kiessling, L. L.; Grim, J. C. Chem. Soc. Rev. 2013, 42, 4476.  doi: 10.1039/c3cs60097a

    5. [5]

      Yilmaz, G.; Becer, C. R. Eur. Polym. J. 2013, 49, 3046.  doi: 10.1016/j.eurpolymj.2013.06.001

    6. [6]

      Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. 2005, 34, 58.  doi: 10.1039/b400593g

    7. [7]

      Bonduelle, C.; Lecommandoux, S. Biomacromolecules 2013, 14, 2973.  doi: 10.1021/bm4008088

    8. [8]

      Krannig, K. S.; Schlaad, H. Soft Matter. 2014, 10, 4228.  doi: 10.1039/c4sm00352g

    9. [9]

      Xiao, C. S.; Ding, J. X.; He, C. L.; Chen, X. S. Acta Polym. Sin. 2018, 45 (in Chinese).  doi: 10.11777/j.issn1000-3304.2018.17282

    10. [10]

      Kempe, K.; Krieg, A.; Becer, C. R.; Schubert, U. S. Chem. Soc. Rev. 2012, 41, 176.  doi: 10.1039/C1CS15107J

    11. [11]

      Hu, Q.; Li, Y. X.; Wang, J. Y.; Li, Y. Y. Acta Chim. Sinica 2015, 73, 416 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.04.006

    12. [12]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    13. [13]

      Wang, Z.; Luo, Z. J.; Li, M. R.; Sheng, R. L.; Luo, T.; Cao, A. M. Acta Polym. Sin. 2016, 667 (in Chinese).

    14. [14]

      D hler, D.; Michael, P.; Binder, W. H. Acc. Chem. Res. 2017, 50, 2610.  doi: 10.1021/acs.accounts.7b00371

    15. [15]

      Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.  doi: 10.1039/C7PY02047C

    16. [16]

      Qin, A.; Liu, Y.; Tang, B. Z. Macromol. Chem. Phys. 2015, 216, 818.  doi: 10.1002/macp.201400571

    17. [17]

      Such, G. K.; Johnston, A. P. R.; Liang, K.; Caruso, F. Prog. Polym. Sci. 2012, 37, 985.  doi: 10.1016/j.progpolymsci.2011.12.002

    18. [18]

      Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev. 2010, 39, 1355.  doi: 10.1039/b901979k

    19. [19]

      Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540.  doi: 10.1002/anie.200903924

    20. [20]

      Liu, Q.; Zhang, Q. Y.; Chen, S. J.; Zhou, J.; Lei, X. F. Chin. J. Org. Chem. 2012, 32, 1846 (in Chinese).
       

    21. [21]

      Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z. Biomaterials 2014, 35, 4969.  doi: 10.1016/j.biomaterials.2014.03.001

    22. [22]

      Sowinska, M.; Urbanczyk-Lipkowska, Z. New J. Chem. 2014, 38, 2168.  doi: 10.1039/c3nj01239e

    23. [23]

      Martens, S.; Holloway, J. O.; Du Prez, F. E. Macromol. Rapid Commun. 2017, 38, 1.
       

    24. [24]

      Lowe, A. B. Polym. Chem. 2014, 5, 4820.  doi: 10.1039/C4PY00339J

    25. [25]

      Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2018, 39, 1.
       

    26. [26]

      Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.  doi: 10.1039/C7PY02047C

    27. [27]

      Huang, Z. H.; Zhou, Y. Y.; Wang, Z. M.; Li, Y.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Chin. J. Polym. Sci. 2017, 35, 317.  doi: 10.1007/s10118-017-1902-0

    28. [28]

      Tang, W.; Becker, M. L. Chem. Soc. Rev. 2014, 43, 7013.  doi: 10.1039/C4CS00139G

    29. [29]

      Tu, X. Y.; Liu, M. Z.; Wei, H. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1447.  doi: 10.1002/pola.28051

    30. [30]

      Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Adv. Mater. 2017, 29 1606100.
       

    31. [31]

      Xiong, X. Q.; Yi, C. Sci. Sin. Chim. 2013, 43, 783 (in Chinese).

    32. [32]

      Huang, D.; Qin, A. J.; Tang, B. Z. Acta Polym. Sin. 2017, 178 (in Chinese).  doi: 10.11777/j.issn1000-3304.2017.16275

    33. [33]

      Bonduelle, C.; Lecommandoux, S. Biomacromolecules 2013, 14, 2973.  doi: 10.1021/bm4008088

    34. [34]

      Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H. A.; Zhong, Z. Prog. Polym. Sci. 2014, 39, 330.  doi: 10.1016/j.progpolymsci.2013.10.008

    35. [35]

      Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.  doi: 10.1039/C3CC46317F

    36. [36]

      Li, X.; Chen, G. Polym. Chem. 2015, 6, 1417.  doi: 10.1039/C4PY01740D

    37. [37]

      Schatz, C.; Louguet, S.; Le Meins, J.-F.; Lecommandoux, S. Angew. Chem., Int. Ed. 2009, 48, 2572.  doi: 10.1002/anie.200805895

    38. [38]

      Huang, J.; Bonduelle, C.; Thévenot, J.; Lecommandoux, S.; Heise, A. J. Am. Chem. Soc. 2012, 134, 119.  doi: 10.1021/ja209676p

    39. [39]

      Kramer, J. R.; Rodriguez, A. R.; Choe, U.-J.; Kamei, D. T.; Deming, T. J. Soft Matter. 2013, 9, 3389.  doi: 10.1039/c3sm27559k

    40. [40]

      Pati, D.; Das, S.; Patil, N. G.; Parekh, N.; Anjum, D. H.; Dhaware, V.; Ambade, A. V.; Sen Gupta, S. Biomacromolecules 2016, 17, 466.  doi: 10.1021/acs.biomac.5b01354

    41. [41]

      Liu, Y.; Zhang, Y.; Wang, Z.; Wang, J.; Wei, K.; Chen, G.; Jiang, M. J. Am. Chem. Soc. 2016, 138, 12387.  doi: 10.1021/jacs.6b05044

    42. [42]

      Das, S.; Sharma, D. K.; Chakrabarty, S.; Chowdhury, A.; Sen Gupta, S. Langmuir 2015, 31, 3402.  doi: 10.1021/la503993e

    43. [43]

      Pati, D.; Kalva, N.; Das, S.; Kumaraswamy, G.; Sen Gupta, S.; Ambade, A. V. J. Am. Chem. Soc. 2012, 134, 7796.  doi: 10.1021/ja300065f

    44. [44]

      St hr, T.; Blaudszun, A. R.; Steinfeld, U.; Wenz, G. Polym. Chem. 2011, 2, 2239.  doi: 10.1039/c1py00187f

    45. [45]

      Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. J. Control. Release 2013, 169, 193.  doi: 10.1016/j.jconrel.2012.12.006

    46. [46]

      Ren, K.; He, C.; Xiao, C.; Li, G.; Chen, X. Biomaterials 2015, 51, 238.  doi: 10.1016/j.biomaterials.2015.02.026

    47. [47]

      Klink, D. T.; Chao, S.; Glick, M. C.; Scanlin, T. F. Mol. Ther. 2001, 3, 831.  doi: 10.1006/mthe.2001.0332

    48. [48]

      Kramer, J. R.; Schmidt, N. W.; Mayle, K. M.; Kamei, D. T.; Wong, G. C. L.; Deming, T. J. ACS Cent. Sci. 2015, 1, 83.  doi: 10.1021/acscentsci.5b00054

    49. [49]

      Jacobs, J.; Byrne, A.; Gathergood, N.; Keyes, T. E.; Heuts, J. P. A.; Heise, A. Macromolecules 2014, 47, 7303.  doi: 10.1021/ma5020462

    50. [50]

      Kramer, J. R.; Onoa, B.; Bustamante, C.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12574.  doi: 10.1073/pnas.1516127112

    51. [51]

      Kramer, J. R.; Deming, T. J. Polym. Chem. 2014, 5, 671.  doi: 10.1039/C3PY01081C

    52. [52]

      Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Chem. Rev. 2009, 109, 5528.  doi: 10.1021/cr900049t

    53. [53]

      Cheng, J.; Deming, T. J. Top. Curr. Chem. 2012, 310, 1.
       

    54. [54]

      Brzezinska, K. R.; Deming, T. J. Macromol. Biosci. 2004, 4, 566.  doi: 10.1002/mabi.200400030

    55. [55]

      Deming, T. J. Peptide Hybrid Polymers, Berlin, Heidelberg, 2006, pp. 1~18.
       

    56. [56]

      Deming, T. J. Nature 1997, 390, 386.  doi: 10.1038/37084

    57. [57]

      Deming, T. J. J. Am. Chem. Soc. 1998, 120, 4240.  doi: 10.1021/ja980313i

    58. [58]

      Deming, T. J.; Curtin, S. A. J. Am. Chem. Soc. 2000, 122, 5710.  doi: 10.1021/ja994281q

    59. [59]

      Deming, T. J. Adv. Drug Delivery Rev. 2002, 54, 1145.  doi: 10.1016/S0169-409X(02)00062-5

    60. [60]

      Curtin, S. A.; Deming, T. J. J. Am. Chem. Soc. 1999, 121, 7427.  doi: 10.1021/ja990905g

    61. [61]

      Rhodes, A. J.; Deming, T. J. J. Am. Chem. Soc. 2012, 134, 19463.  doi: 10.1021/ja308620h

    62. [62]

      Brzezinska, K. R.; Curtin, S. A.; Deming, T. J. Macromolecules 2002, 35, 2970.  doi: 10.1021/ma011951f

    63. [63]

      Zhao, L.; Li, N.; Wang, K.; Shi, C.; Zhang, L.; Luan, Y. A Biomaterials 2014, 35, 1284.  doi: 10.1016/j.biomaterials.2013.10.063

    64. [64]

      Shen, Y.; Fu, X.; Fu, W.; Li, Z. Chem. Soc. Rev. 2015, 44, 612.  doi: 10.1039/C4CS00271G

    65. [65]

      Wibowo, S. H.; Sulistio, A.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G. Chem. Commun. 2014, 50, 4971.  doi: 10.1039/c4cc00293h

    66. [66]

      Cai, C.; Lin, J.; Lu, Y.; Zhang, Q.; Wang, L. Chem. Soc. Rev. 2016, 45, 5985.  doi: 10.1039/C6CS00013D

    67. [67]

      Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.  doi: 10.1039/C3CC46317F

    68. [68]

      Liarou, E.; Varlas, S.; Skoulas, D.; Tsimblouli, C.; Sereti, E.; Dimas, K.; Iatrou, H. Prog. Polym. Sci. 2018, 83, 28.  doi: 10.1016/j.progpolymsci.2018.05.001

    69. [69]

      Deming, T. J. Chem. Rev. 2016, 116, 786.  doi: 10.1021/acs.chemrev.5b00292

    70. [70]

      Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J. Chem. Soc. Rev. 2017, 46, 6570.  doi: 10.1039/C7CS00460E

    71. [71]

      Zhou, X.; Li, Z. Adv. Healthcare Mater. 2018, 7, 1800020.  doi: 10.1002/adhm.201800020

    72. [72]

      Wang, M. Z.; Du, J. Z. Acta Polym. Sin. 2014, 1183 (in Chinese).
       

    73. [73]

      Tian, Z.; Wang, M.; Zhang, A.; Feng, Z. Polymer 2008, 49, 446.  doi: 10.1016/j.polymer.2007.11.048

    74. [74]

      Zeng, X.; Murata, T.; Kawagishi, H.; Usui, T.; Kobayashi, K. Carbohydr. Res. 1998, 312, 209.  doi: 10.1016/S0008-6215(98)00259-6

    75. [75]

      Zeng, X.; Murata, T.; Kawagishi, H.; Usui, T.; Kobayashi, K. Biosci. Biotechnol. Biochem. 1998, 62, 1171.  doi: 10.1271/bbb.62.1171

    76. [76]

      Kobayashi, K.; Tawada, E.; Akaike, T.; Usui, T. Biochim. Biophys. Acta 1997, 1336, 117.  doi: 10.1016/S0304-4165(97)00018-4

    77. [77]

      Mildner, R.; Menzel, H. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3925.  doi: 10.1002/pola.26796

    78. [78]

      Lavilla, C.; Yilmaz, G.; Uzunova, V.; Napier, R.; Becer, C. R.; Heise, A. Biomacromolecules 2017, 18, 1928.  doi: 10.1021/acs.biomac.7b00356

    79. [79]

      Midoux, P.; Mendes, C.; Legrand, A.; Raimond, J.; Mayer, R.; Monsigny, M.; Roche, A. C. Nucleic Acids Res. 1993, 21, 871.  doi: 10.1093/nar/21.4.871

    80. [80]

      Wang, R.; Xu, N.; Du, F. S.; Li, Z. C. Chem. Commun. 2010, 46, 3902.  doi: 10.1039/c002473b

    81. [81]

      Engler, A. C.; Lee, H.; Hammond, P. T. Angew. Chem., Int. Ed. 2009, 48, 9334.  doi: 10.1002/anie.200904070

    82. [82]

      Xiao, C.; Zhao, C.; He, P.; Tang, Z.; Chen, X.; Jing, X. Macromol. Rapid Commun. 2010, 31, 991.  doi: 10.1002/marc.200900821

    83. [83]

      Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. J. Controlled Release 2013, 169, 193.  doi: 10.1016/j.jconrel.2012.12.006

    84. [84]

      Borase, T.; Ninjbadgar, T.; Kapetanakis, A.; Roche, S.; O'Connor, R.; Kerskens, C.; Heise, A.; Brougham, D. F. Angew. Chem., Int. Ed. 2013, 52, 3164.  doi: 10.1002/anie.201208099

    85. [85]

      Kapetanakis, A.; Heise, A. Eur. Polym. J. 2015, 69, 483.  doi: 10.1016/j.eurpolymj.2015.01.033

    86. [86]

      Dhaware, V.; Shaikh, A.; Kar, M.; Hotha, S.; Gupta, S. Langmuir 2013, 29, 5659.  doi: 10.1021/la400144t

    87. [87]

      Huang, J.; Habraken, G.; Audouin, F.; Heise, A. Macromolecules 2010, 43, 6050.  doi: 10.1021/ma101096h

    88. [88]

      Bonduelle, C.; Huang, J.; Ibarboure, E.; Heise, A.; Lecommandoux, S. Chem. Commun. 2012, 48, 8353.  doi: 10.1039/c2cc32970k

    89. [89]

      Bonduelle, C.; Huang, J.; Mena-Barragan, T.; Ortiz Mellet, C.; Decroocq, C.; Etame, E.; Heise, A.; Compain, P.; Lecommandoux, S. Chem. Commun. 2014, 50, 3350.  doi: 10.1039/C3CC48190E

    90. [90]

      Bonduelle, C.; Oliveira, H.; Gauche, C.; Huang, J.; Heise, A.; Lecommandoux, S. Chem. Commun. 2016, 52, 11251.  doi: 10.1039/C6CC06437J

    91. [91]

      Gauche, C.; Lecommandoux, S. Polymer 2016, 107, 474.  doi: 10.1016/j.polymer.2016.08.077

    92. [92]

      Tang, H.; Zhang, D. Biomacromolecules 2010, 11, 1585.  doi: 10.1021/bm1002174

    93. [93]

      Rhodes, A. J.; Deming, T. J. ACS Macro Lett. 2013, 2, 351.  doi: 10.1021/mz4001089

    94. [94]

      Yang, H. K.; Bao, J. F.; Mo, L.; Yang, R. M.; Xu, X. D.; Tang, W. J.; Lin, J. T.; Wang, G. H.; Zhang, L. M.; Jiang, X. Q. RSC Adv. 2017, 7, 21093.  doi: 10.1039/C7RA01440F

    95. [95]

      Sun, J.; Schlaad, H. Macromolecules 2010, 43, 4445.  doi: 10.1021/ma100401m

    96. [96]

      Krannig, K. S.; Sun, J.; Schlaad, H. Biomacromolecules 2014, 15, 978.  doi: 10.1021/bm401883p

    97. [97]

      Krannig, K. S.; Schlaad, H. J. Am. Chem. Soc. 2012, 134, 18542.  doi: 10.1021/ja308772d

    98. [98]

      Krannig, K. S.; Huang, J.; Heise, A.; Schlaad, H. Polym. Chem. 2013, 4, 3981.  doi: 10.1039/c3py00428g

    99. [99]

      Kramer, J. R.; Deming, T. J. Biomacromolecules 2012, 13, 1719.  doi: 10.1021/bm300807b

    100. [100]

      Kramer, J. R.; Deming, T. J. Chem. Commun. 2013, 49, 5144.  doi: 10.1039/c3cc42214c

    101. [101]

      Rüde, E.; Westphal, O.; Hurwitz, E.; Fuchs, S.; Sela, M. Immunochemistry 1966, 3, 137.  doi: 10.1016/0019-2791(66)90293-X

    102. [102]

      Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2010, 132, 15068.  doi: 10.1021/ja107425f

    103. [103]

      Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2012, 134, 4112.  doi: 10.1021/ja3007484

    104. [104]

      Krannig, K. S.; Doriti, A.; Schlaad, H. Macromolecules 2014, 47, 2536.  doi: 10.1021/ma500379m

    105. [105]

      Wang, R.; Xu, N.; Du, F. S.; Li, Z. C. Acta Polym. Sin. 2013, 774 (in Chinese).
       

    106. [106]

      Wang, S. S.-S.; How, S.-C.; Chen, Y.-D.; Tsai, Y.-H.; Jan, J.-S. J. Mater. Chem. B 2015, 3, 5220.  doi: 10.1039/C5TB00417A

    107. [107]

      Upadhyay, K. K.; Le Meins, J.-F.; Misra, A.; Voisin, P.; Bouchaud, V.; Ibarboure, E.; Schatz, C.; Lecommandoux, S. Biomacromolecules 2009, 10, 2802.  doi: 10.1021/bm9006419

    108. [108]

      Yang, H. K.; Zhang, L. M. Mater. Sci. Eng., C: Mater. Biol. Appl. 2014, 41, 36.  doi: 10.1016/j.msec.2014.04.015

    109. [109]

      Wang, Z.; Sheng, R.; Luo, T.; Sun, J.; Cao, A. Polym. Chem. 2017, 8, 472.  doi: 10.1039/C6PY01526C

    110. [110]

      Upadhyay, K. K.; Bhatt, A. N.; Castro, E.; Mishra, A. K.; Chuttani, K.; Dwarakanath, B. S.; Schatz, C.; Le Meins, J. F.; Misra, A.; Lecommandoux, S. Macromol. Biosci. 2010, 10, 503.
       

    111. [111]

      Upadhyay, K. K.; Mishra, A. K.; Chuttani, K.; Kaul, A.; Schatz, C.; Le Meins, J. F.; Misra, A.; Lecommandoux, S. Nanomedicine 2012, 8, 71.  doi: 10.1016/j.nano.2011.05.008

    112. [112]

      Upadhyay, K. K.; Bhatt, A. N.; Mishra, A. K.; Dwarakanath, B. S.; Jain, S.; Schatz, C.; Le Meins, J.-F.; Farooque, A.; Chandraiah, G.; Jain, A. K.; Misra, A.; Lecommandoux, S. Biomaterials 2010, 31, 2882.  doi: 10.1016/j.biomaterials.2009.12.043

    113. [113]

      Mohamed Wali, A. R.; Zhou, J.; Ma, S.; He, Y.; Yue, D.; Tang, J. Z.; Gu, Z. Int. J. Pharm. 2017, 525, 191.  doi: 10.1016/j.ijpharm.2017.04.009

    114. [114]

      Bonduelle, C.; Mazzaferro, S.; Huang, J.; Lambert, O.; Heise, A.; Lecommandoux, S. Faraday Discuss. 2013, 166, 137.  doi: 10.1039/c3fd00082f

    115. [115]

      Fu, L.; Sun, C.; Yan, L. ACS Appl. Mater. Interfaces 2015, 7, 2104.  doi: 10.1021/am508291k

    116. [116]

      Pranantyo, D.; Xu, L. Q.; Hou, Z.; Kang, E. T.; Chan-Park, M. B. Polym. Chem. 2017, 8, 3364.  doi: 10.1039/C7PY00441A

  • 加载中
    1. [1]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    2. [2]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    3. [3]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    4. [4]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

Metrics
  • PDF Downloads(56)
  • Abstract views(2649)
  • HTML views(644)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return