Citation: Zhang Lingjuan, Dang Yujiao, Zhang Xianming. Diversified Synthesis of Imines via Aerobic Oxidation Catalyzed by Dinuclear Butterfly-Like Cu(Ⅰ) Complex[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1650-1654. doi: 10.6023/cjoc201903027 shu

Diversified Synthesis of Imines via Aerobic Oxidation Catalyzed by Dinuclear Butterfly-Like Cu(Ⅰ) Complex

  • Corresponding author: Zhang Lingjuan, zhanglj@sxnu.edu.cn Zhang Xianming, zhangxm@dns.sxnu.edu.cn
  • Received Date: 15 March 2019
    Revised Date: 3 April 2019
    Available Online: 15 June 2019

    Fund Project: the National Natural Science Foundation of China 21402112Project supported by the National Natural Science Foundation of China (No. 21402112), and the 1331 Project of Shanxi Province

Figures(3)

  • The selective catalytic oxidation of amines for the synthesis of imines is important both in laboratory and industrial production. From atom-efficient, economic and environmental view of points, dioxygen selective oxidation of amines was achieved by using wings-opened butterfly-like complex Cu2(ophen)2 as catalyst. It was worth noting that the catalytic system was efficient to the cross-coupling of alcohols with amines, homocoupling of primary amines and oxidative dehydrogenation of secondary amines. The yield is up to 93% and the selectivity of imines is as high as 99%. Avoiding the use of expensive nitroxyl derivatives and base was suitable for practical application.
  • 加载中
    1. [1]

      (a) Largeron, M. Eur. J. Org. Chem. 2013, 2013, 5225.
      (b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111 (4), 2626.
      (c) Chen, B.; Wang, L.; Gao, S. ACS Catal. 2015, 5851.
      (d) Zhang, Z. G.; Li, J. L.; Huang, G. Q.; Sun, K. Zhang, G. S.; Ma, N. N.; Liu, Q. F.; Liu, T. X. Chin. J. Chem. 2016, 34, 1309.
      (e) Patil, R. D.; Adimurthy, S. Asian J. Org. Chem. 2013, 2, 726.

    2. [2]

      (a) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L. J. W.; Ben David, Y.; Espinosa Jalapa, N. A.; Milstein, D. J. Am. Chem. Soc. 2016, 138, 4298.
      (b) Chen, B.; Li, J.; Dai, W.; Wang, L.; Gao, S. Green Chem. 2014, 16, 332.
      (c) Zhang, G.; Hanson, S. K. Org. Lett. 2013, 15, 650.
      (d) Zhang, E.; Tian, H.; Xu, S.; Yu, X.; Xu, Q. Org. Lett. 2013, 15 (11), 2704.
      (e) Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134 (25), 10325.
      (f) Maggi, A.; Madsen, R. Organometallics 2012, 31, 451.
      (g) He, W.; Wang, L.; Sun, C.; Wu, K.; He, S.; Chen, J.; Wu, P.; Yu , Z. Chem.-Eur. J. 2011, 17, 13308.
      (h) Kegnaes, S.; Mielby, J.; Mentzel, U. V.; Christensen, C. H.; Riisager, A. Green Chem. 2010, 12, 1437.
      (i) Jaiswal, G.; Landge, V. G.; Jagadeesan, D.; Balaraman, E. Green Chem. 2016, 18, 3232.
      (j) Tamura, M.; Tomishige, K. Angew. Chem., Int. Ed. 2015, 54, 864.
      (k) Saranya, S.; Ramesh, R.; Grzegorz Małecki, J. Eur. J. Org. Chem. 2017, 2017, 6726.
      (l) Chandra, M. D.; Sadhukha, A.; Maayan, G. J. Catal. 2017, 355, 139.
      (m) Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428.

    3. [3]

      (a) Wang, Z.; Lang, X. Appl. Catal. B-Environ. 2018, 224, 404.
      (b) Rodríguez-Lugo, R. E.; Chacón-Terán, M. A.; De León, S.; Vogt, M.; Rosenthal, A. J.; Landaeta, V. R. Dalton Trans. 2018, 47, 2061.
      (c) Jin, J.; Yang, C.; Zhang, B.; Deng, K. J. Catal. 2018, 361, 33.
      (d) Xu, B.; Hartigan, E. M.; Feula, G.; Huang, Z.; Lumb, J.-P.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2016, 55, 15802.
      (e) Su, C.; Tandiana, R.; Tian, B.; Sengupta, A.; Tang, W.; Su, J.; Loh, K. P. ACS Catal. 2016, 3594.
      (f) Raza, F.; Park, J. H.; Lee, H.-R.; Kim, H.-I.; Jeon, S.-J.; Kim, J.-H. ACS Catal. 2016, 2754.
      (g) Sun, D.; Ye, L.; Li, Z. Appl. Catal. B-Environ. 2015, 164, 428.
      (h) Johnson, J. A.; Luo, J.; Zhang, X.; Chen, Y.-S.; Morton, M. D.; Echeverría, E.; Torres, F. E.; Zhang, J. ACS Catal. 2015, 5, 5283.
      (i) Wu, X.-F.; Petrosyan, A.; Ghochikyan, T. V.; Saghyan, A. S.; Langer, P. Tetrahedron Lett. 2013, 54, 3158.
      (j) Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2011, 1, 1150.
      (k) Varyani, M.; Khatri, P. K.; Jain, S. L. Tetrahedron Lett. 2016, 57, 723.

    4. [4]

      Nikbakht, F.; Heydari, A. CR Chim. 2015, 18, 132.  doi: 10.1016/j.crci.2014.06.005

    5. [5]

      (a) Liu, Y.; Chen, Y.; Zhou, W.; Jiang, B.; Zhang, X.; Tian, G. Catal. Sci. Technol. 2018, 8, 5535.
      (b) Dutta, I.; De, S.; Yadav, S.; Mondol, R.; Bera, J. K. J. Organomet. Chem. 2017, 849-850, 117.
      (c) Bai, L.; Dang, Z. RSC Adv. 2015, 5, 10341.
      (d) Wang, J.; Lu, S.; Cao, X.; Gu, H. Chem. Comm. 2014, 50, 5637.
      (e) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53, 8824.
      (f) Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354, 2671.
      (g) Kang, Q.; Zhang, Y. Green Chem. 2012, 14, 1016.

    6. [6]

      (a) Lan, Y.-S.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Eur. J.Org. Chem. 2013, 2013, 5160.
      (b) Pérez, J. M.; Cano, R.; Yus, M.; Ramón, D. J. Eur. J. Org. Chem. 2012, 2012, 4548.

    7. [7]

      (a) Huang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Tetrahedron Lett. 2013, 54, 2861.
      (b) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.

    8. [8]

      Zhang, L. J.; Liu, J.; Zhang, F. Q.; Zhang, X.-M. J. Catal. 2017, 354, 78.  doi: 10.1016/j.jcat.2017.08.013

    9. [9]

      (a) Shen, Y.; Zhou, Y.; Jiang, L.; Ding, G.; Luo, L.; Zhang, Z.; Xie, X. Tetrahedron 2018, 74, 4266.
      (b) Tao, C.; Wang, B.; Sun, L.; Liu, Z.; Zhai, Y.; Zhang, X.; Wang, J. OrgBioChem 2017, 15, 328.
      (c) Ray, R.; Chandra, S.; Yadav, V.; Mondal, P.; Maiti, D.; Lahiri, G. K. Chem. Commun. 2017, 53, 4006.
      (d) Liu, G.; Sun, L.; Liu, J.; Wang, F.; Guild, C. J. Mol. Catal. 2017, 440, 148.
      (e) Pavel, O. D.; Goodrich, P.; Cristian, L.; Coman, S. M.; Pâ rvulescu, V. I.; Hardacre, C. Catal. Sci. Technol. 2015, 5, 2696.

    10. [10]

      Patil, R. D.; Adimurthy, S. RSC Adv.2012, 2, 5119.  doi: 10.1039/c2ra20339a

    11. [11]

      Zhang, X.-M.; Tong, M.-L.; Gong, M. L.; Lee, H.-K.; Luo, L.; Li, K. F.; Tong, Y.-X.; Chen, X.-M. Chem.-Eur. J. 2002, 8, 3187.  doi: 10.1002/1521-3765(20020715)8:14<3187::AID-CHEM3187>3.0.CO;2-9

    12. [12]

      Zhang, G. Q.; Hanson, S. K. Org. Lett. 2013, 15, 3650.  doi: 10.1021/ol401534g

    13. [13]

      Zhang, Y.; Lu, F.; Huang, R.; Zhang, H.; Zhao, J. Catal. Commun. 2016, 81, 10.  doi: 10.1016/j.catcom.2016.03.019

  • 加载中
    1. [1]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    2. [2]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    3. [3]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    4. [4]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    5. [5]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    8. [8]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    9. [9]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    10. [10]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    11. [11]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    12. [12]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    13. [13]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    14. [14]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    15. [15]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    16. [16]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    17. [17]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    18. [18]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    19. [19]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    20. [20]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

Metrics
  • PDF Downloads(4)
  • Abstract views(698)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return