Cobalt-Catalyzed Dehydrogenative Silylation of Vinylarenes
- Corresponding author: Lu Zhan, luzhan@zju.edu.cn
Citation:
Cheng Biao, Lu Peng, Zhao Jiajin, Lu Zhan. Cobalt-Catalyzed Dehydrogenative Silylation of Vinylarenes[J]. Chinese Journal of Organic Chemistry,
;2019, 39(6): 1704-1710.
doi:
10.6023/cjoc201903018
(a) Chan, T. H.; Fleming, I. Synthesis 1979, 761.
(b) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
(c) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
(d) Fleming, I.; Barbero, A.; Water, D. Chem. Rev. 1997, 97, 2063.
(a) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663.
(b) Martin, S. E. S.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330.
(a) Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887.
(b) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726.
(c) Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K. Org. Lett. 2002, 4, 2825.
(d) Denmark, S. E.; Pan, W. Org. Lett. 2002, 4, 4163.
(e) Brunner, H. Angew. Chem., Int. Ed. 2004, 43, 2749.
(f) Aricó, C. S.; Cox, L. R. Org. Biomol. Chem. 2004, 2, 2558.
(g) Menozzi, C.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2005, 70, 10717.
(h) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644.
(i) Maifeld, S. V.; Tran, M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105.
(j) Berthon-Gelloz, G.; Schumers, J.-M.; De Bo, G.; Markó, I. E. J. Org. Chem. 2008, 73, 4190.
(k) Sore, H. F.; Blackwell, D. T.; MacDonald, S. J. F.; Spring, D. R. Org. Lett. 2010, 12, 2806.
(l) Ding, S.-T.; Song, L.-J.; Chung, L. W.; Zhang, X.-H.; Sun, J.-W.; Wu, Y.-D. J. Am. Chem. Soc. 2013, 135, 13835.
(m) Guo, J.; Lu, Z. Angew. Chem., Int. Ed. 2016, 55, 10835.
(a) Pietraszuk, C.; Fischer, H.; Kujawa, M.; Marciniec, B. Tetrahedron Lett. 2001, 42, 1175.
(b) Denmark, S. E.; Yang, S.-M. Org. Lett. 2001, 3, 1749.
(a) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. Tetrahedron Lett. 1987, 28, 1443.
(b) Murthi, K. K.; Salomon, R. G. Tetrahedron Lett. 1994, 35, 517.
(c) Hodgson, D. M.; Comina, P. J. Tetrahedron Lett. 1994, 35, 9469.
(d) Itami, K.; Nokami, T.; Yoshida, J.-I. Org. Lett. 2000, 2, 1299.
(e) McNulty, J.; Das, P. Chem. Commun. 2008, 1244.
(f) Mu, Q.-C.; Wang, X.-B.; Ye, F.; Sun, Y.-L.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, L.-W. Chem. Commun. 2018, 54, 12994.
(a) Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244.
(b) Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.-Y.; Fout, A. R. ACS Catal. 2016, 6, 3589.
(c) Jakobsson, K.; Chu, T.; Nikonov, G. I. ACS Catal. 2016, 6, 7350.
(d) Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V. ACS Catal. 2017, 7, 2275.
(e) Chen, Y.-J.; Ji, S.-F.; Sun, W.-M.; Chen, W.-X.; Dong, J.-C.; Wen, J.-F.; Zhang, J.; Li, Z.; Zheng, L.-R.; Chen, C.; Peng, Q.; Wang, D.-S.; Li, Y.-D. J. Am. Chem. Soc. 2018, 140, 7407.
(f) Liu, J.-X.; Chen, W.-F.; Li, J.-F.; Cui, C.-M. ACS Catal. 2018, 8, 2230.
(a) Hori, Y.; Mrrsudo, T.; Watanabe, Y. Bull. Chem. Soc. Jpn. 1988, 61, 3011.
(b) Christ, M. L.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1995, 14, 1082.
(c) Bokka, A.; Jeon, J. Org. Lett. 2016, 18, 5324.
(a) Millan, A.; Towns, E.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1981, 673.
(b) Millan, A.; Fernandez, M.-J.; Bentz, P.; Maitlis, P. M. J. Mol. Catal. 1984, 26, 89.
(c) Doyle, M. P.; Devora, G. A.; Nefedov, A. O.; High, K. G. Organometallics 1992, 11, 549.
(d) Takeuchi, R.; Yasue, H. Organometallics 1996, 15, 2098.
(e) Truscott, B. J.; Slawin, A. M. Z.; Nolan, S. P. Dalton Trans. 2013, 42, 270.
LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906.
doi: 10.1021/ja962979n
(a) Fernández, M. J.; Esteruelas, M. A.; Jlménez, M. S.; Oro, L. A. Organometallics 1986, 5, 1519.
(b) Oro, L. A.; Fernandez, M. J.; Esteruelas, M. A.; Jimenez, M. S. J. Mol. Catal. 1986, 37, 151.
(c) Tanke, R. S.; Crabtree, R. H. Organometallics 1991, 10, 415.
(d) Lu, B.; Falck, J. R. J. Org. Chem. 2010, 75, 1701.
(e) Cheng, C.; Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 8984.
Sprengers, J. W.; de Greef, M.; Duin, M. A.; Elsevier, C. J. Eur. J. Inorg. Chem. 2003, 3811.
Jiang, Y.; Blacque, O.; Fox, T.; Frech, C. M.; Berke, H. Chem.-Eur. J. 2009, 15, 2121.
doi: 10.1002/chem.v15:9
Nakamura, S.; Yonehara, M.; Uchiyama, M. Chem.-Eur. J. 2008, 14, 1068.
doi: 10.1002/(ISSN)1521-3765
(a) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
(b) Du, X.-Y.; Huang, Z. ACS Catal. 2017, 7, 1227.
(c) Zhang, J.-H.; Hao, X.-Q.; Wang, Z.-L.; Ren, C.-J.; Niu, J.-L.; Song, M.-P. Chin. J. Org. Chem. 2017, 37, 1237 (in Chinese).
(张家恒, 郝新奇, 王正龙, 任常久, 牛俊龙, 宋毛平, 有机化学, 2017, 37, 1237.)
(d) Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347 (in Chinese).
(顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61.
doi: 10.1016/S0040-4020(01)99004-0
(a) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet. Chem. 1993, 456, 45.
(b) Naumov, R. N.; Itazaki, M.; Kamitani, M.; Nakazawa, H. J. Am. Chem. Soc. 2012, 134, 804.
(c) Marciniec, B.; Kownacka, A.; Kownacki, I.; Taylor, R. Appl. Catal. A: General 2014, 486, 230.
(d) Sunada, Y.; Noda, D.; Soejima, H.; Tsutsumi, H.; Nagashima, H. Organometallics 2015, 34, 2896.
(e) Du, X.-Y.; Zhang, Y.-L.; Peng, D.-J.; Huang, Z. Angew. Chem., Int. Ed. 2016, 55, 6671.
(a) Marciniec, B.; Maciejewski, H.; Kownacki, I. J. Mol. Catal. A: Chemical 1998, 135, 223.
(b) Maciejewski, H.; Marciniec, B.; Kownacki, I. J. Organomet. Chem. 2000, 597, 175.
Takeshita, K.; Seki, Y.; kawamoto, K.; Murai, S.; Sonoda, N. J. Org. Chem. 1987, 52, 4864.
doi: 10.1021/jo00231a008
Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 12108.
doi: 10.1021/ja5060884
Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluć, P. Catal. Commun. 2016, 78, 71.
doi: 10.1016/j.catcom.2016.02.009
(a) Wang, C.; Teo, W. J.; Ge, S.-Z. ACS Catal. 2017, 7, 855.
(b) Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798.
(c) Gao, Y.-F.; Wang, L.-J.; Deng, L. ACS Catal. 2018, 8, 9637.
(d) Basu, D.; Gilbert-Wilson, R.; Gray, D. L.; Rauchfuss, T. B. Organometallics 2018, 37, 2760.
(e) Sanagawa, A.; Nagashima, H. Organometallics 2018, 37, 2859.
For selected reviews on earth-abundant transition metal-catalyzed asymmetric hydrofunctionalization of alkenes and alkynes, see:
(a) Chen, J.-H.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
(b) Chen, J.-H.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
For hydroboration of alkenes and alkynes, see: (a) Chen, J.-H.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
(b) Chen, J.-H.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306.
(c) Zhang, H.-Y.; Lu, Z. ACS Catal. 2016, 6, 6596.
(d) Xi, T.; Lu, Z. ACS Catal. 2017, 7, 1181.
(e) Chen, X.; Cheng, Z.-Y.; Lu, Z. Org. Lett. 2017, 19, 969.
(f) Chen, C.-H.; Shen, X.-Z.; Chen, J.-H.; Hong, X.; Lu, Z. Org. Lett. 2017, 19, 5422.
(g) Guo, J.; Cheng, B.; Shen, X.-Z.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 15316.
(h) Chen, X.; Cheng, Z.-Y.; Guo, J.; Lu, Z. Nat. Commun. 2018, 9, 3939.
For hydrosilylation of alkenes and alkynes, see:
(a) Chen, J.-H.; Cheng, B.; Cao, M.-Y.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661.
(b) Guo, J.; Lu, Z. Angew. Chem., Int. Ed. 2016, 55, 10835.
(c) Xi, T.; Lu, Z. J. Org. Chem. 2016, 81, 8858.
(d) Guo, J.; Shen, X.-Z.; Lu, Z. Angew. Chem., Int. Ed. 2017, 56, 615.
(e) Cheng, B.; Lu, P.; Zhang, H.-Y.; Cheng, X.-P.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
(f) Cheng, B.; Liu, W.-B.; Lu, Z. J. Am. Chem. Soc. 2018, 140, 5014.
(g) Cheng, Z.-Y.; Xing, S.-P.; Guo, J.; Cheng, B.; Hu, L.-F.; Zhang, X.-H.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
(h) Guo, J.; Wang, H.-L.; Xing, S.-P. Hong, X.; Lu, Z. Chem 2019, 5, 881.
For asymmetric hydrogenation of alkenes, see:Chen, J.-H.; Chen, C.-H.; Ji, C.-L.; Lu, Z. Org. Lett. 2016, 18, 1594.
Zhang, L.; Zuo, Z.-Q.; Wan, X.-L.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.
doi: 10.1021/ja5093908
Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631.
doi: 10.1021/acscatal.6b02374
Guo, J.; Chen, J.-H.; Lu, Z. Chem. Commun. 2015, 51, 5725.
doi: 10.1039/C5CC01084E
JoongLee, S.; KyeuPark, M.; HeeHan, B. Silicon Chemistry 2002, 1, 41.
doi: 10.1023/A:1016032911342
Ramírez-Oliva, E.; Hernández, A.; Martínez-Rosales, J. M.; Aguilar-Elguezabal, A.; Herrera-Pérez, G.; Cervantes, J. ARKIVOC 2006, 126.
Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286.
doi: 10.1021/jo00376a044
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Chonglong He , Yulong Wang , Quan-Xin Li , Zichen Yan , Keyuan Zhang , Shao-Fei Ni , Xin-Hua Duan , Le Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Fengqing Wang , Changxing Qi , Chunmei Chen , Qin Li , Qingyi Tong , Weiguang Sun , Zhengxi Hu , Minyan Wang , Hucheng Zhu , Lianghu Gu , Yonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242