Citation: Cheng Biao, Lu Peng, Zhao Jiajin, Lu Zhan. Cobalt-Catalyzed Dehydrogenative Silylation of Vinylarenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1704-1710. doi: 10.6023/cjoc201903018 shu

Cobalt-Catalyzed Dehydrogenative Silylation of Vinylarenes

  • Corresponding author: Lu Zhan, luzhan@zju.edu.cn
  • Received Date: 10 March 2019
    Revised Date: 3 April 2019
    Available Online: 16 June 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772171), the National Basic Research Program of China (973 Program, No. 2015CB856600), the Zhejiang Provincial Natural Science Foundation (No. LR19B020001), the K. P. Chao's High Technology Development Foundation of Zhejiang University and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21772171the National Basic Research Program of China 2015CB856600the Zhejiang Provincial Natural Science Foundation LR19B020001

Figures(2)

  • A highly chemo-, regio-, and stereo-selective cobalt-catalyzed dehydrogenative silylation of vinylarenes was described. The imidazoline iminopyridine cobalt complex could promote this reaction effectively and improve the chemoselectivity dramatically. This protocol used earth-abundant transition metal, readily available alkenes and hydrosilanes to construct valuable vinylsilanes. The reaction could be carried out in gramscale and the proposed mechanism was also described.
  • 加载中
    1. [1]

      (a) Chan, T. H.; Fleming, I. Synthesis 1979, 761.
      (b) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
      (c) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
      (d) Fleming, I.; Barbero, A.; Water, D. Chem. Rev. 1997, 97, 2063.

    2. [2]

      (a) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663.
      (b) Martin, S. E. S.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330.

    3. [3]

      (a) Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887.
      (b) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726.
      (c) Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K. Org. Lett. 2002, 4, 2825.
      (d) Denmark, S. E.; Pan, W. Org. Lett. 2002, 4, 4163.
      (e) Brunner, H. Angew. Chem., Int. Ed. 2004, 43, 2749.
      (f) Aricó, C. S.; Cox, L. R. Org. Biomol. Chem. 2004, 2, 2558.
      (g) Menozzi, C.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2005, 70, 10717.
      (h) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644.
      (i) Maifeld, S. V.; Tran, M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105.
      (j) Berthon-Gelloz, G.; Schumers, J.-M.; De Bo, G.; Markó, I. E. J. Org. Chem. 2008, 73, 4190.
      (k) Sore, H. F.; Blackwell, D. T.; MacDonald, S. J. F.; Spring, D. R. Org. Lett. 2010, 12, 2806.
      (l) Ding, S.-T.; Song, L.-J.; Chung, L. W.; Zhang, X.-H.; Sun, J.-W.; Wu, Y.-D. J. Am. Chem. Soc. 2013, 135, 13835.
      (m) Guo, J.; Lu, Z. Angew. Chem., Int. Ed. 2016, 55, 10835.

    4. [4]

      (a) Pietraszuk, C.; Fischer, H.; Kujawa, M.; Marciniec, B. Tetrahedron Lett. 2001, 42, 1175.
      (b) Denmark, S. E.; Yang, S.-M. Org. Lett. 2001, 3, 1749.

    5. [5]

      (a) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. Tetrahedron Lett. 1987, 28, 1443.
      (b) Murthi, K. K.; Salomon, R. G. Tetrahedron Lett. 1994, 35, 517.
      (c) Hodgson, D. M.; Comina, P. J. Tetrahedron Lett. 1994, 35, 9469.
      (d) Itami, K.; Nokami, T.; Yoshida, J.-I. Org. Lett. 2000, 2, 1299.
      (e) McNulty, J.; Das, P. Chem. Commun. 2008, 1244.
      (f) Mu, Q.-C.; Wang, X.-B.; Ye, F.; Sun, Y.-L.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, L.-W. Chem. Commun. 2018, 54, 12994.

    6. [6]

      (a) Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244.
      (b) Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.-Y.; Fout, A. R. ACS Catal. 2016, 6, 3589.
      (c) Jakobsson, K.; Chu, T.; Nikonov, G. I. ACS Catal. 2016, 6, 7350.
      (d) Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V. ACS Catal. 2017, 7, 2275.
      (e) Chen, Y.-J.; Ji, S.-F.; Sun, W.-M.; Chen, W.-X.; Dong, J.-C.; Wen, J.-F.; Zhang, J.; Li, Z.; Zheng, L.-R.; Chen, C.; Peng, Q.; Wang, D.-S.; Li, Y.-D. J. Am. Chem. Soc. 2018, 140, 7407.
      (f) Liu, J.-X.; Chen, W.-F.; Li, J.-F.; Cui, C.-M. ACS Catal. 2018, 8, 2230.

    7. [7]

      (a) Hori, Y.; Mrrsudo, T.; Watanabe, Y. Bull. Chem. Soc. Jpn. 1988, 61, 3011.
      (b) Christ, M. L.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1995, 14, 1082.
      (c) Bokka, A.; Jeon, J. Org. Lett. 2016, 18, 5324.

    8. [8]

      (a) Millan, A.; Towns, E.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1981, 673.
      (b) Millan, A.; Fernandez, M.-J.; Bentz, P.; Maitlis, P. M. J. Mol. Catal. 1984, 26, 89.
      (c) Doyle, M. P.; Devora, G. A.; Nefedov, A. O.; High, K. G. Organometallics 1992, 11, 549.
      (d) Takeuchi, R.; Yasue, H. Organometallics 1996, 15, 2098.
      (e) Truscott, B. J.; Slawin, A. M. Z.; Nolan, S. P. Dalton Trans. 2013, 42, 270.

    9. [9]

      LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906.  doi: 10.1021/ja962979n

    10. [10]

      (a) Fernández, M. J.; Esteruelas, M. A.; Jlménez, M. S.; Oro, L. A. Organometallics 1986, 5, 1519.
      (b) Oro, L. A.; Fernandez, M. J.; Esteruelas, M. A.; Jimenez, M. S. J. Mol. Catal. 1986, 37, 151.
      (c) Tanke, R. S.; Crabtree, R. H. Organometallics 1991, 10, 415.
      (d) Lu, B.; Falck, J. R. J. Org. Chem. 2010, 75, 1701.
      (e) Cheng, C.; Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 8984.

    11. [11]

      Sprengers, J. W.; de Greef, M.; Duin, M. A.; Elsevier, C. J. Eur. J. Inorg. Chem. 2003, 3811.

    12. [12]

      Jiang, Y.; Blacque, O.; Fox, T.; Frech, C. M.; Berke, H. Chem.-Eur. J. 2009, 15, 2121.  doi: 10.1002/chem.v15:9

    13. [13]

      Nakamura, S.; Yonehara, M.; Uchiyama, M. Chem.-Eur. J. 2008, 14, 1068.  doi: 10.1002/(ISSN)1521-3765

    14. [14]

      (a) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
      (b) Du, X.-Y.; Huang, Z. ACS Catal. 2017, 7, 1227.
      (c) Zhang, J.-H.; Hao, X.-Q.; Wang, Z.-L.; Ren, C.-J.; Niu, J.-L.; Song, M.-P. Chin. J. Org. Chem. 2017, 37, 1237 (in Chinese).
      (张家恒, 郝新奇, 王正龙, 任常久, 牛俊龙, 宋毛平, 有机化学, 2017, 37, 1237.)
      (d) Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347 (in Chinese).
      (顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)

    15. [15]

      Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61.  doi: 10.1016/S0040-4020(01)99004-0

    16. [16]

      (a) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet. Chem. 1993, 456, 45.
      (b) Naumov, R. N.; Itazaki, M.; Kamitani, M.; Nakazawa, H. J. Am. Chem. Soc. 2012, 134, 804.
      (c) Marciniec, B.; Kownacka, A.; Kownacki, I.; Taylor, R. Appl. Catal. A: General 2014, 486, 230.
      (d) Sunada, Y.; Noda, D.; Soejima, H.; Tsutsumi, H.; Nagashima, H. Organometallics 2015, 34, 2896.
      (e) Du, X.-Y.; Zhang, Y.-L.; Peng, D.-J.; Huang, Z. Angew. Chem., Int. Ed. 2016, 55, 6671.

    17. [17]

      (a) Marciniec, B.; Maciejewski, H.; Kownacki, I. J. Mol. Catal. A: Chemical 1998, 135, 223.
      (b) Maciejewski, H.; Marciniec, B.; Kownacki, I. J. Organomet. Chem. 2000, 597, 175.

    18. [18]

      Takeshita, K.; Seki, Y.; kawamoto, K.; Murai, S.; Sonoda, N. J. Org. Chem. 1987, 52, 4864.  doi: 10.1021/jo00231a008

    19. [19]

      Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 12108.  doi: 10.1021/ja5060884

    20. [20]

      Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluć, P. Catal. Commun. 2016, 78, 71.  doi: 10.1016/j.catcom.2016.02.009

    21. [21]

      (a) Wang, C.; Teo, W. J.; Ge, S.-Z. ACS Catal. 2017, 7, 855.
      (b) Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798.
      (c) Gao, Y.-F.; Wang, L.-J.; Deng, L. ACS Catal. 2018, 8, 9637.
      (d) Basu, D.; Gilbert-Wilson, R.; Gray, D. L.; Rauchfuss, T. B. Organometallics 2018, 37, 2760.
      (e) Sanagawa, A.; Nagashima, H. Organometallics 2018, 37, 2859.

    22. [22]

      For selected reviews on earth-abundant transition metal-catalyzed asymmetric hydrofunctionalization of alkenes and alkynes, see:
      (a) Chen, J.-H.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
      (b) Chen, J.-H.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.

    23. [23]

      For hydroboration of alkenes and alkynes, see: (a) Chen, J.-H.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
      (b) Chen, J.-H.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306.
      (c) Zhang, H.-Y.; Lu, Z. ACS Catal. 2016, 6, 6596.
      (d) Xi, T.; Lu, Z. ACS Catal. 2017, 7, 1181.
      (e) Chen, X.; Cheng, Z.-Y.; Lu, Z. Org. Lett. 2017, 19, 969.
      (f) Chen, C.-H.; Shen, X.-Z.; Chen, J.-H.; Hong, X.; Lu, Z. Org. Lett. 2017, 19, 5422.
      (g) Guo, J.; Cheng, B.; Shen, X.-Z.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 15316.
      (h) Chen, X.; Cheng, Z.-Y.; Guo, J.; Lu, Z. Nat. Commun. 2018, 9, 3939.

    24. [24]

      For hydrosilylation of alkenes and alkynes, see:
      (a) Chen, J.-H.; Cheng, B.; Cao, M.-Y.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661.
      (b) Guo, J.; Lu, Z. Angew. Chem., Int. Ed. 2016, 55, 10835.
      (c) Xi, T.; Lu, Z. J. Org. Chem. 2016, 81, 8858.
      (d) Guo, J.; Shen, X.-Z.; Lu, Z. Angew. Chem., Int. Ed. 2017, 56, 615.
      (e) Cheng, B.; Lu, P.; Zhang, H.-Y.; Cheng, X.-P.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
      (f) Cheng, B.; Liu, W.-B.; Lu, Z. J. Am. Chem. Soc. 2018, 140, 5014.
      (g) Cheng, Z.-Y.; Xing, S.-P.; Guo, J.; Cheng, B.; Hu, L.-F.; Zhang, X.-H.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
      (h) Guo, J.; Wang, H.-L.; Xing, S.-P. Hong, X.; Lu, Z. Chem 2019, 5, 881.

    25. [25]

      For asymmetric hydrogenation of alkenes, see:Chen, J.-H.; Chen, C.-H.; Ji, C.-L.; Lu, Z. Org. Lett. 2016, 18, 1594.

    26. [26]

      Zhang, L.; Zuo, Z.-Q.; Wan, X.-L.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.  doi: 10.1021/ja5093908

    27. [27]

      Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631.  doi: 10.1021/acscatal.6b02374

    28. [28]

      Guo, J.; Chen, J.-H.; Lu, Z. Chem. Commun. 2015, 51, 5725.  doi: 10.1039/C5CC01084E

    29. [29]

      JoongLee, S.; KyeuPark, M.; HeeHan, B. Silicon Chemistry 2002, 1, 41.  doi: 10.1023/A:1016032911342

    30. [30]

      Ramírez-Oliva, E.; Hernández, A.; Martínez-Rosales, J. M.; Aguilar-Elguezabal, A.; Herrera-Pérez, G.; Cervantes, J. ARKIVOC 2006, 126.

    31. [31]

      Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286.  doi: 10.1021/jo00376a044

  • 加载中
    1. [1]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    2. [2]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    3. [3]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    4. [4]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    5. [5]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    6. [6]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    7. [7]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    10. [10]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    11. [11]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    12. [12]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    13. [13]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    14. [14]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    15. [15]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    16. [16]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    17. [17]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    18. [18]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    19. [19]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    20. [20]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

Metrics
  • PDF Downloads(7)
  • Abstract views(725)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return