Citation: Shan He, Ling Li, Hu Jianfeng, Zhang Hao. Application in the Asymmetric Catalytic Reactions of Chiral Cyclopentadienyl-Transition-Metal Complexes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1548-1556. doi: 10.6023/cjoc201903012 shu

Application in the Asymmetric Catalytic Reactions of Chiral Cyclopentadienyl-Transition-Metal Complexes

  • Corresponding author: Zhang Hao, haozhang@imu.edu.cn
  • Received Date: 6 March 2019
    Revised Date: 26 April 2019
    Available Online: 6 June 2019

    Fund Project: the National Natural Science Foundation of China 21861028the Natural Science Foundation of Inner Mongolia 2017MS0206Project supported by the National Natural Science Foundation of China (No.21861028) and the Natural Science Foundation of Inner Mongolia (No. 2017MS0206)

Figures(15)

  • The chiral Cp ligands as stereocontrolling element of asymmetric catalytic reactions have attracted increasing attention. Particularly, designing and synthesizing more versatile chiral Cp ligands became one of the most interested research focuses in asymmetric catalysis. The complexes of various chiral Cp ligands with different transition metals that advanced in recent years, and the applications of these complexes in catalytic asymmetric reactions are reviewed in this paper.
  • 加载中
    1. [1]

      Togni, A.; Halterman, R. L. In Metallocenes: Synthesis, Reactivity, applications, Vol. 2, Eds.: Jutzi, P.; Edelmann, F. T., Wiley-VCH, New York, 1998, pp. 1~102.

    2. [2]

      Halterman, R. L.; Vollhardt, K. P. C. Organometallics 1988, 7, 883.  doi: 10.1021/om00094a015

    3. [3]

      Halterman, R. L. Chem. Rev. 1992, 92, 965.  doi: 10.1021/cr00013a011

    4. [4]

      Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935.  doi: 10.1021/jacs.5b12964

    5. [5]

      Ye, B.-H.; Cramer, N. Science 2012, 338, 504.  doi: 10.1126/science.1226938

    6. [6]

      (a) Jang, H.-J.; Romiti, F.; Torker, S.; Hoveyda, A. H. Nat. Chem. 2017, 9, 1269.
      (b) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2017, 50, 988.
      (c) Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739.
      (d) Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9091.

    7. [7]

      Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. In Comprehensive Asymmetric Catalysis, Vol. Ⅰ~Ⅲ, Eds.: Brown, J. M.; Buchwald, S. L., Springer-Verlag, New York, 1999, pp. 1~10.

    8. [8]

      Wu, P.-L.; Jia, M.-Q.; Lin, W.-L.; Ma, S.-M. Org. Lett. 2018, 20, 554.  doi: 10.1021/acs.orglett.7b03637

    9. [9]

      (a) Zhu, G.-Q.; Wang, P. Chin. J. Synth. Chem. 2018, 26, 66 (in Chinese).
      (朱广乾, 王鹏, 合成化学, 2018, 26, 66.)
      (b) Inoue, F.; Myuto, K.; Yadav, M. R.; Nakao, Y. Angew. Chem., Int. Ed. 2017, 56, 13307.
      (c) Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265.
      (d) Wang, Z.-B.; Yin, H.-L.; Fu, G. C. Nature 2018, 563, 379.
      (e) Zheng, S.-C.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2019, 58, 1494.
      (f) Yao, K.; Yuan, Q.-J.; Qu, X.-X.; Liu, Y.-G.; Liu, D.-L.; Zhang, W.-B. Chem. Sci. 2019, 10, 1767.

    10. [10]

      Nishiura, M.; Guo, F.; Hou, Z.-M. Acc. Chem. Res. 2015, 48, 2209.

    11. [11]

      Li, S.-H.; Liu, D.-T.; Wang, Z.-C.; Cui, D.-M. ACS Catal. 2018, 8, 6086.  doi: 10.1021/acscatal.8b00885

    12. [12]

      Zhang, H.; Zhou, B.; Li, H.; Qu, D.-H.; Tian, H. J. Org. Chem. 2013, 78, 2091.  doi: 10.1021/jo302107a

    13. [13]

      Liu, X.-L.; Li, J.-Z.; Bi, F.-Q.; Zhang, W.-Q.; Gao, Z.-W.; Zhang, G.-F. Eur. J. Inorg. Chem. 2015, 9, 1496.

    14. [14]

      Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153.  doi: 10.1039/c2cs15234g

    15. [15]

      Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.  doi: 10.1021/ja016334l

    16. [16]

      Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 18697.  doi: 10.1021/ja411310w

    17. [17]

      Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429.  doi: 10.1021/ja00773a028

    18. [18]

      Whitesell, J. K. Chem. Rev. 1989, 89, 1581.  doi: 10.1021/cr00097a012

    19. [19]

      Ye, B.-H.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.  doi: 10.1021/acs.accounts.5b00092

    20. [20]

      Zhang, A.-B.; RajanBabu, T. V. Org. Lett. 2004, 6, 1515.  doi: 10.1021/ol0495063

    21. [21]

      Li, W.-G.; Zhang, Z.-G.; Xiao, D.-M.; Zhang, X.-M. J. Org. Chem. 2000, 65, 3489.  doi: 10.1021/jo000066c

    22. [22]

      Ye, B.-H.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.  doi: 10.1021/ja311956k

    23. [23]

      Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139.  doi: 10.1021/ja021244h

    24. [24]

      Ahmed, I.; Clark, D. A. Org. Lett. 2014, 16, 4332.  doi: 10.1021/ol502126r

    25. [25]

      Song, G.-Y.; Wylie, W. N. O.; Hou, Z.-M. J. Am. Chem. Soc. 2014, 136, 12209.  doi: 10.1021/ja504995f

    26. [26]

      Teng, H.-L.; Luo, Y.; Wang, B.-L.; Zhang, L.; Nishiura, M.; Hou, Z.-M. Angew. Chem., Int. Ed. 2016, 55, 15406.  doi: 10.1002/anie.v55.49

    27. [27]

      Teng, H.-L; Luo, Y.; Nishiura, M.; Hou, Z.-M. J. Am. Chem. Soc. 2017, 139, 16506.
       

    28. [28]

      Dieckmann, M.; Jang, Y.-S.; Cramer, N. Angew. Chem., Int. Ed. 2015, 54, 12149.  doi: 10.1002/anie.201506483

    29. [29]

      Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2015, 137, 12478.  doi: 10.1021/jacs.5b08232

    30. [30]

      Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500.  doi: 10.1126/science.1226132

    31. [31]

      Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.  doi: 10.1021/jacs.6b02302

    32. [32]

      (a) Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.
      (b) Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404.
      (c) Li, S.-Y.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2016, 138, 16561.

    33. [33]

      Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215.  doi: 10.1002/anie.v47:28

    34. [34]

      Jia, Z.-J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2017, 56, 2429.  doi: 10.1002/anie.201611981

    35. [35]

      (a) Potowski, M.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2012, 51, 9512.
      (b) Potowski, M.; Antonchick, A. P.; Waldmann, H. Chem. Commun. 2013, 49, 7800.
      (c) He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem., Int. Ed. 2013, 52, 2934.

    36. [36]

      (a) Gotoh, H.; Masui, R.; Ogino, H.; Shoji, M.; Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 6853.
      (b) Gotoh, H.; Ogino, H.; Ishikawa, H.; Hayashi, Y. Tetrahedron 2010, 66, 4894.

    37. [37]

      Wang, S.-G.; Park, S. H.; Cramer, N. Angew. Chem. 2018, 130, 5557.  doi: 10.1002/ange.v130.19

    38. [38]

      Smits, G.; Audic, B.; Wodrich, M. D.; Corminboeuf, C.; Cramer, N. Chem. Sci. 2017, 8, 7174.  doi: 10.1039/C7SC02986A

    39. [39]

      Audic, B.; Wodrich, M. D.; Cramer, N. Chem. Sci. 2019, 10, 781.  doi: 10.1039/C8SC04385J

    40. [40]

      Teng, H.-L.; Ma, Y.-H.; Zhan, G.; Nishiura, M.; Hou, Z.-M. ACS Catal. 2018, 8, 4705.  doi: 10.1021/acscatal.8b01189

    41. [41]

      Ye, B.-H.; Cramer, N. Angew. Chem. 2014, 126, 8030.  doi: 10.1002/ange.201404895

    42. [42]

      Zheng, J.; Wang, S.-B.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 4880.  doi: 10.1021/jacs.5b01707

    43. [43]

      Chidipudi, S. R.; Burns, D. J.; Khan, I.; Lam, H. W. Angew. Chem., Int. Ed. 2015, 54, 13975.  doi: 10.1002/anie.201507029

    44. [44]

      Jang, Y.-S.; Dieckmann, M.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 15088.  doi: 10.1002/anie.201708440

    45. [45]

      Kossler, D.; Perrin, F. G.; Suleymanov, A. A.; Kiefer, G.; Scopelliti, R.; Severin, K.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 11490.  doi: 10.1002/anie.v56.38

    46. [46]

      Zheng, J.; You, S.-L. Angew. Chem., Int. Ed. 2014, 53, 13244.  doi: 10.1002/anie.201408805

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(17)
  • Abstract views(1213)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return