Citation: Zhang Zhenlei, Qian Peng, Zha Zhenggen. Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Sulfonyl Hydrazides with Amines:A New Access to Aromatic Sulfonamides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1316-1322. doi: 10.6023/cjoc201903009 shu

Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Sulfonyl Hydrazides with Amines:A New Access to Aromatic Sulfonamides

  • Corresponding author: Zhang Zhenlei, helenken@mail.ustc.edu.cn Zha Zhenggen, zgzha@ustc.edu.cn
  • Received Date: 5 March 2019
    Revised Date: 26 March 2019
    Available Online: 19 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21672200, 21472177)the National Natural Science Foundation of China 21672200the National Natural Science Foundation of China 21472177

Figures(5)

  • A copper(Ⅱ)-catalyzed aerobic oxidative coupling of aromatic sulfonyl hydrazides with amines for the synthesis of aromatic sulfonamides was described. In contrast to previously described methods, this reaction employs copper/O2 as the catalytic system, and generates N2 as the only byproduct, which provides an environmentally benign synthetic route for aromatic sulfonamides.
  • 加载中
    1. [1]

      For recent reviews, see:
      (a) Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2016, 55, 58.
      (b) Yan, M.; Lo, J. C.; J. Edwards, T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
      (c) Kärkäs, M. D. ACS Catal. 2017, 7, 4999.
      (d) Jiang, Y.; Xu, K.; Zeng, C. C. Chem. Rev. 2018, 118, 4485.

    2. [2]

      For recent reviews, see:
      (a) McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756.
      (b) Shimkin, K. W.; Watson, B. D. A. J. Org. Chem. 2015, 11, 2278.
      (c) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. B. Chem. Rev. 2015, 115, 1622.
      (d) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.

    3. [3]

      For recent reviews, see:
      (a) Zhu, X.; Chiba, S. Chem. Soc. Rev. 2016, 45, 4504.
      (b) Tang, X. D.; Wu, W. Q.; Zeng, W.; Jiang, H. F. Acc. Chem. Res. 2018, 51, 1092.

    4. [4]

      For recent examples, see:
      (a) Lee, C.; Wang, X.; Jang, H.-Y. Org. Lett. 2015, 17, 1130,
      (b) Chen, C.-Y.; Tang, G.; He, F.; Wang, Z.; Jing, H.; Faessler, R. Org. Lett. 2016, 18, 1690.
      (c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.

    5. [5]

      (a) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43, 775
      (b) Shen, C.-H.; Wang, Y.-F.; Kovalevsky, A. Y.; Harrison, R. W.; Weber, I. T. FEBS J. 2010, 277, 3699.
      (c) McCormack, P. L. Durgs 2011, 71, 2457.

    6. [6]

      (a) De Boer, T. J.; Backer, H. J. Org. Synth. 1954, 34, 96.
      (b) Harmata, M.; Zheng, P.; Huang, C.; Gomes, M. G.; Ying, W.; Ranyanil, K.-O.; Balan, G.; Calkins, N. L. J. Org. Chem. 2006, 72, 683.

    7. [7]

      (a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
      (b) Burton, G.; Cao, P.; Li, G.; Rivero, R. Org. Lett. 2003, 5, 4373.
      (c) Rosen, B. R.; Ruble, J. C.; Beauchamp, T. J.; Navarro, A. Org. Lett. 2011, 13, 2564.
      (d) Baffoe, J.; Hoe, M. Y.; Toure, B. B. Org. Lett. 2010, 12, 1532.
      (e) Audisio, D.; Messaoudi, S.; Peyrat, J. F.; Brion, J. D.; Alami, M. J. Org. Chem. 2011, 76, 4995.

    8. [8]

      (a) Shekhar, S.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen, S. C. J. Org. Chem. 2011, 76, 4552.
      (b) Moon, S.-Y.; Nam, J.; Rathwell, K.; Kim, W.-S. Org. Lett. 2014, 16, 338.

    9. [9]

      (a) Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M.-M.; Radnik, J.; Hubner, S.; Jä hnisch, K.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.
      (b) Zhu, M.; Fujita, K.; Yamaguchi, R. Org. Lett. 2010, 12, 1336.
      (c) Cui, X.; Shi, F.; Zhang, Y.; Deng, Y. Tetrahedron Lett. 2010, 51, 2048.
      (d) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. J. Org. Chem. 2011, 76, 2328.
      (e) Shekhar, S.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen, S. C. J. Org. Chem. 2011, 76, 4552.

    10. [10]

      Tang, X. D.; Huang, L. B.; Qi, C. R.; Wu, X.; Wu, W. Q.; Jiang, H. F. Chem. Commun. 2013, 49, 6102.  doi: 10.1039/c3cc41249k

    11. [11]

      Huang, X.; Wang, J. C.; Ni, Z. Q.; Wang, S. C.; Pan, Y. J. Chem. Commun. 2014, 50, 4582.  doi: 10.1039/C4CC01353K

    12. [12]

      Zhu, M.; Wei, W.; Liu, C. L.; Yang, D. S.; Wen, J. W.; You, J. M.; Wang, H. Adv. Synth. Catal. 2015, 357, 987.  doi: 10.1002/adsc.v357.5

    13. [13]

      Pan, X. J.; Gao, J.; Liu, J.; Lai, J. Y.; Jiang, H. F.; Yuan, G. Q. Green Chem. 2015, 17, 1400.  doi: 10.1039/C4GC02115K

    14. [14]

      Yang, K.; Ke, M. L.; Lin, Y. G.; Song, Q. L. Green Chem. 2015, 17, 1395.  doi: 10.1039/C4GC02236J

    15. [15]

      (a) Zhu, H.; Shen, Y.; Deng, Q.; Tu, T. Chem. Commun. 2015, 51, 16573.
      (b) Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 1167.

    16. [16]

      (a) Yotphan, S.; Sumunnee, L.; Beukeaw, D.; Buathongjan, C.; Reutrakul, V. Org. Biomol. Chem. 2016, 14, 590.
      (b) Feng, J.-B.; Wu, X.-F. Org. Biomol. Chem. 2016, 14, 6951.
      (c) Parumala, S. K. R.; Peddinti, R. K. Tetrahedron Lett. 2016, 57, 1232.
      (d) Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Wang, L.; Meng, G.; Wang, H. Org. Biomol. Chem. 2017, 15, 4789.
      (e) Yu, H.; Zhang, Y. Chin. J. Chem. 2016, 34, 359.

    17. [17]

      (a) Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726.
      (b) Li, W.; Beller, M.; Wu, X.-F. Chem. Commun. 2014, 50, 9513.
      (c) Ji, J.; Liu, Z.; Liu, P.; Sun, P. P. Org. Biomol. Chem. 2016, 14, 7018.
      (d) Zhang, W.; Luo, M. Chem. Commun. 2016, 52, 2980.
      (e) Shyam, P. K.; Jang, H.-Y. J. Org. Chem. 2017, 82, 1761.

    18. [18]

      (a) Yang, F.-L.; Tian, S.-K. Tetrahedron Lett. 2017, 58, 487.
      (b) Chung, S.; Kim, J. Tetrahedron Lett. 2019, 60, 792.

    19. [19]

      (a) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
      (b) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem. 2018, 57, 7668.
      (c) Lin, J.-S.; Li, T.-T.; Liu, J.-R.; Jiao, G.-Y.; Gu, Q.-S.; Cheng, J.-T.; Guo, Y.-L.; Hong, X.; Liu, X.-Y. J. Am. Chem. Soc. 2019, 141, 1074.

    20. [20]

      Intermediate 5 has been proposed by some previous reports, see:
      (a) Yang, F.-L.; Tian, S.-K. Tetrahedron Lett. 2017, 58, 487.
      (b) Li, X. Q.; Xu, X. S.; Hu, P. Z.; Xiao, X. Q.; Zhou, C. J. Org. Chem. 2013, 78, 7343.
      (c) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52, 4929.

    21. [21]

      The sulfonyl radical could be initiated by O2, for selected examples, see:
      (a) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
      (b) Shen, T.; Yuan, Y.; Song, S.; Jiao, N. Chem. Commun. 2014, 50, 4115.

    22. [22]

      Alonso, E.; Ramón, D. J.; Yus, M. Tetrahedron 1997, 53, 14355.  doi: 10.1016/S0040-4020(97)00920-4

  • 加载中
    1. [1]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    2. [2]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    3. [3]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    4. [4]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    5. [5]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    6. [6]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    7. [7]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    8. [8]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    9. [9]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    10. [10]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    11. [11]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    12. [12]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    13. [13]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    14. [14]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    15. [15]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    16. [16]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    17. [17]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    18. [18]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    19. [19]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    20. [20]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

Metrics
  • PDF Downloads(5)
  • Abstract views(693)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return