Citation: Li Jiang, Wan Tong, Zhang Junjie, Fu Yao. Iron-Catalyzed Selective Hydrogenation of Stearic Acid to Stearyl Alcohol[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3258-3263. doi: 10.6023/cjoc201902031 shu

Iron-Catalyzed Selective Hydrogenation of Stearic Acid to Stearyl Alcohol

  • Corresponding author: Li Jiang, lijiang@cup.edu.cn
  • Received Date: 26 February 2019
    Revised Date: 13 May 2019
    Available Online: 2 November 2019

    Fund Project: the National Natural Science Foundation of China 21702227the Science Foundation of China University of Petroleum (Beijing) 2462014YJRC037Project supported by the National Natural Science Foundation of China (No. 21702227) and the Science Foundation of China University of Petroleum (Beijing) (No. 2462014YJRC037)

Figures(7)

  • The utilization of sustainable resources such as biomass to produce fuels and chemicals has recently attracted significant attention due to the depletion of fossil reserves, increasing energy demand, and growing environmental concerns. Long-chain fatty acids, which are major constituents of plant oil, are important feedstock for biorefinery. Besides producing well-known biodiesels, the hydrogenation of fatty acids to fatty alcohols has recently drawn significant attention due to the versatility and growing market value of fatty alcohols. An example of heterogenous iron-catalyzed selective hydrogenation of stearic acid to stearyl alcohol is reported. Comparing with other reported non-noble metal centers, such as Co and Ni, Fe is 3000~30000 times more abundant and 20~150 times cheaper, thus making our method more economic and attractive. The iron catalyst was prepared by simultaneous pyrolysis of iron precursor[Fe(acac)3] and nitrogen-doped carbon precursor (melamine) onto alumina, bearing Fe3C active phase and nitrogen-doped carbon-alumina hybrid support. The optimization of preparation parameter showed that the optimal pyrolysis temperature is 900℃, while the best mass fraction of iron is 20%. The replacement of Fe(acac)3 with Fe(NO3)3 led to inferior catalytic performance, which was due to undesired redox reaction between NO3- and melamine during pyrolysis that hampered the reaction between Fe and melamine to form Fe3C active phase. Instead, hercynite phase became the predominant phase. The exploration of reaction parameter showed that the optimal reaction temperature is 320℃, and the best H2 pressure is 4 MPa. The time course for stearic acid conversion shows that stearic acid was rapidly converted into stearyl alcohol with yield of 88.6% within 0.5 h, and then gradually converted into octadecane with yield of 90% at 4 h. The unsatisfactory stability of the iron catalyst is probably due to the decomposition of Fe3C active phase to metallic Fe phase during recycling tests.
  • 加载中
    1. [1]

      Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.  doi: 10.1021/cr068360d

    2. [2]

      Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.  doi: 10.1021/cr050989d

    3. [3]

      Yang, Z.; Fu, Y.; Guo, Q. Chin. J. Org. Chem. 2015, 35, 273 (in Chinese).
       

    4. [4]

      Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A. H.; Al-Hinai, M. A.; Baawain, M.; Rashid, U.; Ahmad, M. N. M. Rev. Chem. Eng. 2018, 34, 267.  doi: 10.1515/revce-2016-0026

    5. [5]

      Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827.

    6. [6]

      Gupta, S. Frost and Sullivan Market Insight 2004, 11075449.

    7. [7]

      Adkins, H.; Folkers, K. J. Am. Chem. Soc. 1931, 53, 1095.  doi: 10.1021/ja01354a042

    8. [8]

      Toba, M.; Tanaka, S.-I.; Niwa, S.-I.; Mizukami, F.; Koppány, Z.; Guczi, L.; Cheah, K.-Y.; Tang, T.-S. Appl. Catal., A 1999, 189, 243.  doi: 10.1016/S0926-860X(99)00281-1

    9. [9]

      Mendes, M.; Santos, O.; Jordao, E.; Silva, A. Appl. Catal., A 2001, 217, 253.  doi: 10.1016/S0926-860X(01)00613-5

    10. [10]

      Takeda, Y.; Nakagawa, Y.; Tomishige, K. Catal. Sci. Technol. 2012, 2, 2221.  doi: 10.1039/c2cy20302b

    11. [11]

      Takeda, Y.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2015, 5, 7034.  doi: 10.1021/acscatal.5b01054

    12. [12]

      Ullrich, J.; Breit, B. ACS Catal. 2018, 8, 785.  doi: 10.1021/acscatal.7b03484

    13. [13]

      Manyar, H. G.; Paun, C.; Pilus, R.; Rooney, D. W.; Thompson, J. M.; Hardacre, C. Chem. Commun. 2010, 46, 6279.  doi: 10.1039/c0cc01365j

    14. [14]

      Rozmysłowicz, B.; Kirilin, A.; Aho, A.; Manyar, H.; Hardacre, C.; Wärn , J.; Salmi, T.; Murzin, D. Y. J. Catalysis 2015, 328, 197.  doi: 10.1016/j.jcat.2015.01.003

    15. [15]

      Toyao, T.; Siddiki, S. M.; Touchy, A. S.; Onodera, W.; Kon, K.; Morita, Y.; Kamachi, T.; Yoshizawa, K.; Shimizu, K. I. Chem.-Eur. J. 2017, 23, 1001.  doi: 10.1002/chem.201604762

    16. [16]

      Kandel, K.; Chaudhary, U.; Nelson, N. C.; Slowing, I. I. ACS Catal. 2015, 5, 6719.  doi: 10.1021/acscatal.5b01664

    17. [17]

      Wu, L.; Li, L.; Li, B.; Zhao, C. Chem. Commun. 2017, 53, 6152.  doi: 10.1039/C7CC01126A

    18. [18]

      Onyestyák, G.; Harnos, S.; Kalló, D. Catal. Commun. 2011, 16, 184.  doi: 10.1016/j.catcom.2011.09.032

    19. [19]

      Gao, X.; Tong, D.; Zhong, H.; Jin, B.; Jin, F.; Zhang, H. RSC Adv. 2016, 6, 27623.  doi: 10.1039/C6RA01150K

    20. [20]

      Kong, X.; Fang, Z.; Bao, X.; Wang, Z.; Mao, S.; Wang, Y. J. Catalysis 2018, 367, 139.  doi: 10.1016/j.jcat.2018.08.022

    21. [21]

      Jia, W.; Xu, G.; Liu, X.; Zhou, F.; Ma, H.; Zhang, Y.; Fu, Y. Energy Fuels 2018, 32, 8438.  doi: 10.1021/acs.energyfuels.8b01114

    22. [22]

      Song, S.; Wang, D.; Di, L.; Wang, C.; Dai, W.; Wu, G.; Guan, N.; Li, L. Chin. J. Catal. 2018, 39, 250.  doi: 10.1016/S1872-2067(17)63003-1

    23. [23]

      Li, J.; Zhang, J.; Wang, S.; Xu, G.; Wang, H.; Vlachos, D. G. ACS Catal. 2019, 9, 1564.  doi: 10.1021/acscatal.8b04967

    24. [24]

      Jagadeesh, R. V.; Surkus, A.; Junge, H.; Pohl, M.; Radnik, J.; Rabeah, J.; Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M. Science 2013, 342, 1073.  doi: 10.1126/science.1242005

    25. [25]

      Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus, A.; Junge, K.; Topf, C.; Beller, M. J. Am. Chem. Soc. 2015, 137, 10652.  doi: 10.1021/jacs.5b05674

    26. [26]

      Natte, K.; Neumann, H.; Jagadeesh, R. V.; Beller, M. Nat. Commun. 2017, 8, 1344.  doi: 10.1038/s41467-017-01428-0

    27. [27]

      Li, J.; Liu, J.; Zhou, H.; Fu, Y. ChemSusChem 2016, 9, 1339.  doi: 10.1002/cssc.201600089

    28. [28]

      Li, J.; Liu, J.; Liu, H.; Xu, G.; Zhang, J.; Liu, J.; Zhou, G.; Li, Q.; Xu, Z.; Fu, Y. ChemSusChem 2017, 10, 1436.  doi: 10.1002/cssc.201700105

    29. [29]

      Li, J.; Zhang, J.; Liu, H.; Liu, J.; Xu, G.; Liu, J.; Sun, H.; Fu, Y. ChemistrySelect 2017, 2, 11062.  doi: 10.1002/slct.201701966

    30. [30]

      Li, J.; Sun, H.; Liu, J. X.; Zhang, J. J.; Li, Z. X.; Fu, Y. Mol. Catal. 2018, 452, 36.  doi: 10.1016/j.mcat.2018.03.014

    31. [31]

      Leveneur, J.; Waterhouse, G. I. N.; Kennedy, J.; Metson, J. B.; Mitchell, D. R. G. J. Phys. Chem. C 2011, 115, 20978.  doi: 10.1021/jp206357c

  • 加载中
    1. [1]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    6. [6]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    13. [13]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

Metrics
  • PDF Downloads(8)
  • Abstract views(973)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return