Citation: Guo Qingjun. Asymmetric Synthesis of Diarylmethanols by Chiral Phosphoramide Ligands Catalysts[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2912-2919. doi: 10.6023/cjoc201902026 shu

Asymmetric Synthesis of Diarylmethanols by Chiral Phosphoramide Ligands Catalysts

  • Corresponding author: Guo Qingjun, guoqingjun2005@126.com
  • Received Date: 24 February 2019
    Revised Date: 29 March 2019
    Available Online: 21 October 2019

Figures(3)

  • In order to improve the application of chiral phosphoramide ligands in catalytic asymmetric reactions, thiophosphoramide, which was synthesized from trans-1, 2-cyclohexanediamine was used as a catalyst to synthesize chiral diarylmethanol compounds through addition reaction. The catalytic activity of the ligand in the asymmetric addition reaction of the arylalkyl zincs to the aromatic aldehyde can be as high as 94% ee under the optimized reaction conditions in the presence of 30 mol% phosphoramide ligand N-((1R, 2R)-2-(isopropylamino)cyclohexyl)-P, P-diphenylphosphinic amide (9c) and the corresponding chiral diarylmethanol compound was obtained with the yields of >90%. Despite the large amount of catalyst, the ligand is very convenient to recycle and reuse in this system. At the same time, the reaction mechanism was speculated, and it is believed that the quaternary transition state and the six-element transition state formed by the reaction process are beneficial to improve the enantioselectivity of the reaction.
  • 加载中
    1. [1]

      Einhorn, A. Ber. Dtsch. Chem. Ges. 1883, 16, 2208.  doi: 10.1002/cber.188301602132

    2. [2]

      Torrens, A.; Castrillo, J.; Claparols, A.; Redondo, J. Synlett 1999, 765.

    3. [3]

      (a) Casy, A. F.; Drake, A. F.; Ganellin, C. R.; Mercer, A. D.; Upton, C. Chirality 1992, 4, 356.
      (b) Müller, P.; Nury, P.; Bernardinelli, G. Eur. J. Org. Chem. 2001, 2001, 4137.

    4. [4]

      Hite, G.; Barouh, V.; Dall, H.; Patel, D. J. Med. Chem. 1971, 14, 834.  doi: 10.1021/jm00291a014

    5. [5]

      Guo, Z.; Raeissi, S.; White, R. B.; Stevens, J. C. Drug Metab. Dispos. 1997, 25, 390.
       

    6. [6]

      Li, C.; Chauret, N.; Trimble, L. A.; Nicoll-Griffith, D. A; Silva, J. M; MacDonald, D.; Perrier, H.; Yergey, J. A.; Parton, T.; Alexander, R. P.; Warrellow, G. J. Drug Metab. Dispos. 2001, 29, 232.

    7. [7]

      (a) James, M. N. G.; Williams, G. J. B. Can. J. Chem. 1974, 52, 1872.
      (b) Shafi'ee, A.; Hite, G. J. Med. Chem. 1969, 12, 266.

    8. [8]

      (a) Bolm, C.; Hildebrand, J. P.; Muñiz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284.
      (b) Ji, J. X.; Wu, J.; Xu, L. J.; Chiu, W. Y.; Kim, H. L.; Albert, S. C. Pure Appl. Chem. 2006; 78, 267.

    9. [9]

      (a) Fernández-Mateos, E.; Maciá, B.; Yus, M. Tetrahedron: Asymmetry 2012, 23, 789.
      (b) Wu, K. H.; Gau, H. M. J. Am. Chem. Soc. 2006, 128, 14808.

    10. [10]

      (a) Da, C.-S.; Wang, J. R.; Yin, X. G.; Fan, X. Y.; Liu, Y.; Yu, S. L. Org. Lett. 2009, 11, 5578.
      (b) Fan, X. Y.; Yang, Y. X.; Zhuo, F.-F.; Yu, S. L.; Li, X.; Guo, Q. P.; Du, Z. X.; Da, C. S. Chem. -Eur. J. 2010, 16, 7988.

    11. [11]

      Tomita, D.; Wada, R.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 4138.  doi: 10.1021/ja0507362

    12. [12]

      Chang, S. J.; Zhou, S.; Gau, H. M. RSC Adv. 2015, 5, 9368.  doi: 10.1039/C4RA14173C

    13. [13]

      (a) Fernández-Mateos, E.; Maciá, B.; Yus, M. Eur. J. Org. Chem. 2012, 3732.
      (b) Nakagawa, Y.; Muramatsu, Y.; Harada, T. Eur. J. Org. Chem. 2010, 6535.

    14. [14]

      Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850.  doi: 10.1021/ja028518l

    15. [15]

      Bauer, M.; Maurer, F.; Hoffmann, S. M.; Kazmaier U. Synlett 2008, 3203.

    16. [16]

    17. [17]

      Huang, H.; Bian, G.; Zong, H.; Wang, Y.; Yang, S.; Yue, H.; Song, L.; Fan, H. Org. Lett. 2016, 18, 2524.  doi: 10.1021/acs.orglett.6b00088

    18. [18]

      Shen, B.; Huang, H.; Bian, G.; Zong, H.; Song, L. Chirality 2013, 25, 561.  doi: 10.1002/chir.22171

    19. [19]

      Huang, H. Y.; Zong, H.; Shen, B.; Yue, H. F.; Bian, G. L.; Song, L. Tetrahedron 2014, 70, 1289.  doi: 10.1016/j.tet.2013.12.054

    20. [20]

      Kaik, M.; Gawroński, J. Tetrahedron:Asymmetry 2003 141559.

    21. [21]

      Huang, H. Y.; Z ong, H.; Bian, G. L.; Song, L. J. Org. Chem. 2012, 77, 10427.  doi: 10.1021/jo3016715

    22. [22]

      Yang, Y. X.; Liu, Y.; Zhang, L.; Jia, Y. E.; Wang, P.; Zhuo, F. F.; An, X. T.; Da, C. S. J. Org. Chem. 2014, 79, 10696.  doi: 10.1021/jo502070r

    23. [23]

      Wu, X. Y.; Liu, X. Y.; Zhao, G. Tetrahedron:Asymmetry 2005, 16, 2299.  doi: 10.1016/j.tetasy.2005.06.010

    24. [24]

      Tian, C.; Gong, L.; Meggers, E. Chem. Commun. 2016, 52, 4207.  doi: 10.1039/C6CC00972G

    25. [25]

      Barsamian, A. L.; Wu, Z. H.; Blakemore, P. R. Org. Biomol. Chem. 2015, 13, 3781.  doi: 10.1039/C5OB00159E

    26. [26]

      Wang, Y. B.; Zong, H.; Huang, H. Y.; Song, L. Tetrahedron:Asymmetry 2017, 28, 90.  doi: 10.1016/j.tetasy.2016.11.011

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    16. [16]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(11)
  • Abstract views(1129)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return