Citation: Liu Xueying, Liu Zhenwei, Guo Yuanyuan, Li Jingya, Zou Dapeng, Wu Yusheng, Wu Yangjie. One-Pot, Two-Step Reductive Amination of Boronate Ester Containing Aromatic Amines and Aldehydes Using B2pin2 as Reductant[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 2001-2008. doi: 10.6023/cjoc201902011 shu

One-Pot, Two-Step Reductive Amination of Boronate Ester Containing Aromatic Amines and Aldehydes Using B2pin2 as Reductant

  • Received Date: 13 February 2019
    Revised Date: 15 March 2019
    Available Online: 29 July 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21172200, 21702191)the National Natural Science Foundation of China 21172200the National Natural Science Foundation of China 21702191

Figures(2)

  • The aromatic amine functionality occupies a very important role in organic chemistry due to its prominence in biological and naturally occurring molecules. In addition, the synthesized secondary aromatic amines with pendant boronate ester are versatile intermediates in several organic transformations. The one-pot, two-step reductive amination of boron-containing primary aromatic amines and aldehydes has been achieved in the presence of NaOH in ethanol using B2pin2 as reductant. After extensive screening of various reaction parameters, such as base, reaction temperature, solvent, reaction time and protective gas, a series of secondary aromatic amines with pendant boronate ester and various functional groups were obtained in moderate to good yields under the optimal reaction conditions. This system features generally high yields and broad functional group tolerance. The boronate ester substituent is a very good handle to be further functionalized.
  • 加载中
    1. [1]

      Pham, P. D.; Bertus, P.; Legoupy, S. Chem. Commun. 2009, 6207.
       

    2. [2]

      For literature pertaining to the origins and definition of reductive amination, see:(a) Emerson, W. S. Org. React. 1948, 4, 174.
      (b) Moore, M. L. Org. React. 1949, 5, 301.
      (c) Nugenta, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753.

    3. [3]

      Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120.  doi: 10.1021/jo026856z

    4. [4]

      (a) Skucas, E.; Kong, J.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242.
      (b) Park, J. W.; Chung, Y. K. ACS Catal. 2015, 5, 4846.

    5. [5]

      Pagnoux-Ozherelyeva, A.; Pannetier, N.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-L. Angew. Chem., Int. Ed. 2012, 51, 4976.  doi: 10.1002/anie.201201360

    6. [6]

      Nasrollahzadeh, M. New J. Chem. 2014, 38, 5544.  doi: 10.1039/C4NJ01440E

    7. [7]

      Huang, L.; Wang, Z.; Geng, L.; Chen, R.; Xing, W.; Wang, Y.; Huang, J. RSC Adv. 2015, 5, 56936.  doi: 10.1039/C5RA05243B

    8. [8]

      Gao, G.; Sun, P.; Li, Y.; Wang, F.; Zhao, Z.; Qin, Y.; Li, F. ACS Catal. 2017, 7, 4927.  doi: 10.1021/acscatal.7b01786

    9. [9]

      Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849.  doi: 10.1021/jo960057x

    10. [10]

      Roe, A.; Montgomery, J. A. J. Am. Chem. Soc. 1953, 75, 910.  doi: 10.1021/ja01100a040

    11. [11]

      Tripathi, R. P.; Verma, S. S.; Pandey, J.; Tiwari, V. K. Curr. Org. Chem. 2008, 12, 1093.  doi: 10.2174/138527208785740283

    12. [12]

      (a) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.
      (b) Borch, R. F.; Hassid, A. I. J. Org. Chem. 1972, 37, 1673.
      (c) Marchini, P.; Liso, G.; Reho, A.; Liberatone, F.; Moracci, F. M. J. Org. Chem. 1975, 40, 3453.
      (d) Lane, C. F. Synthesis 1975, 135.

    13. [13]

      (a) Abdel-Magid, A. F.; Maryanoff, C. A.; Carson, K. G. Tetrahedron Lett. 1990, 31, 5595.
      (b) Kim, H. O.; Carrol, B.; Lee, M. S. Synth. Commun. 1997, 27, 2505.
      (c) Tarasevich, V. A.; Kozlov, N. G. Russ. Chem. Rev. 1999, 68, 55.

    14. [14]

      Borch, R. F.; Durst, H. D. J. Am. Chem. Soc. 1969, 91, 3996.  doi: 10.1021/ja01042a078

    15. [15]

      (a) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
      (b) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.
      (c) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
      (d) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.

    16. [16]

      (a) Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Chem. Sci. 2013, 4, 4022.
      (b) Yu, X.; Wang, S.; Xu, H.; Gong, H. Org. Lett. 2011, 13, 2138.
      (c) Liang, Z.; Xue, W.; Lin, K.; Gong, H. Org. Lett. 2014, 16, 5620.
      (d) Zhang, G.; Xie, Y.; Wang, Z.; Liu, Y.; Huang, H. Chem. Commun. 2015, 51, 1850.
      (e) Ke, M.; Song, Q. J. Org. Chem. 2016, 81, 3654.
      (f) Doi, R.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2016, 55, 341.
      (g) Ke, M.; Song, Q. Chem. Commun. 2017, 53, 2222.
      (h) Chen, Z.; Wang, X. Org. Biomol. Chem. 2017, 15, 5790.
      (i) Ke, M.; Song, Q. Adv. Synth. Catal. 2017, 359, 384.
      (j) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.; Wang, X.; Gong, T.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.
      (k) Kuang, Z.; Li, B.; Song, Q. Chem. Commun. 2018, 54, 34.

    17. [17]

      (a) Ojha, D. P.; Gadde, K.; Prabhu, K. R. Org. Lett. 2016, 18, 5062.
      (b) Ding, W.; Song, Q. Org. Chem. Front. 2016, 3, 14.
      (c) Wang, Q.; Yang, J.; Fang, D.; Ren, J.; Dong, B.; Zhou, B.; Zeng, B. Tetrahedron Lett. 2016, 57, 2587.

    18. [18]

      (a) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.
      (b) Bae, S.; Lakshman, M. K. J. Org. Chem. 2008, 73, 1311.
      (c) Kokatla, H. P.; Thomson, P. F.; Bae, S.; Doddi, V. R.; Lakshman, M. K. J. Org. Chem. 2011, 76, 7842.
      (d) Xuan, Q.; Zhao, C.; Song, Q. Org. Biomol. Chem. 2017, 15, 5140.

    19. [19]

      (a) Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y. S.; W, Y. J. Org. Lett. 2016, 18, 2774.
      (b) Yang, K.; Zhou, F.; Kuang, Z.; Gao, G.; Driver, T. Org. Lett. 2016, 18, 4088.

    20. [20]

      Enthaler, S. Catal. Lett. 2012, 142, 1306.  doi: 10.1007/s10562-012-0897-y

    21. [21]

      Xuan, Q.; Song Q. Org. Lett. 2016, 18, 4250.  doi: 10.1021/acs.orglett.6b01999

    22. [22]

      (a) Lu, H.; Wang, S.; Li, J.; Zou, D.; Wu, Y. S.; Wu, Y. J. Tetrahedron Lett. 2017, 58, 839.
      (b) Zhi, W.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. J. Org. Chem. 2017, 82, 12286.
      (c) Ren, X.; Han, S.; Gao, X.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59, 1065.
      (d) Zhi, W.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59, 537.
      (e) Zhi, W.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59, 2736.

    23. [23]

      (a) Geng, Z.; Zhang, Y.; Zheng, L.; Li, J.; Zou, D.; Wu, Y. J.; Wu, Y. S. Tetrahedron Lett. 2016, 57, 3063.
      (b) Zhang, Y.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Adv. Synth. Catal. 2017, 359, 390.
      (c) Zhu, M.; Qiu, Z.; Zhang, Y.; Du, H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2017, 58, 2255.
      (d) Zhu, M.; Du, H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59, 1352.

    24. [24]

      (a) Menet, C. J. M.; Blanc, J.; Hodges, A. J.; Burli, R. W.; Breccia, P.; Blackaby, W. P.; Van Rompaey, L. J. C.; Fletcher, S. R. WO 2010/010184, 2010.
      (b) Liu, B.; Huang, J.; Zheng, C.; Zhang, Y.; Ouyang, L.; Mao, H.; Nie, B.; Xu, J.; Chen, H. CN 2015/10402418, 2015.

    25. [25]

      Chen, Y.; Liu, S.; Cui, P.; Zhang, J.; Liu, Q.; Zhou, H. Tetrahedron Lett. 2019, 60, 327.  doi: 10.1016/j.tetlet.2018.12.041

    26. [26]

      Christopher, M. V.; Liliya, G. N.; David, W. N.; Heather, A. S.; Andreas, D.; Mark, O. B.; Felix, J. B.; Stephen, A. W. Can. J. Chem. 2001, 79, 1115.  doi: 10.1139/v01-090

    27. [27]

      Wheaton, S. L.; Humanayun Kabir, S. M.; Zhang, H.; Vogels1, C. M.; Decken, A.; Westcott, S. Cent. Eur. J. Chem. 2010, 8, 725.
       

  • 加载中
    1. [1]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    2. [2]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    3. [3]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    4. [4]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    5. [5]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    6. [6]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    7. [7]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    8. [8]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    9. [9]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    10. [10]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    11. [11]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    12. [12]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    13. [13]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    14. [14]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    15. [15]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    16. [16]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    17. [17]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    18. [18]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    19. [19]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    20. [20]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

Metrics
  • PDF Downloads(7)
  • Abstract views(919)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return