Citation: Zhang Huaiyuan, Tang Rongping, Shi Xingli, Xie Lin, Wu Jiawei. Recent Advances in Organic Electrochemical Synthesis and Application of Hypervalent Iodine Reagents[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1837-1845. doi: 10.6023/cjoc201902006 shu

Recent Advances in Organic Electrochemical Synthesis and Application of Hypervalent Iodine Reagents

  • Corresponding author: Zhang Huaiyuan, zhanghuaiyuan@lzpcc.edu.cn
  • Received Date: 11 February 2019
    Revised Date: 10 March 2019
    Available Online: 9 July 2019

    Fund Project: the Scientific Research Projects of Colleges and Universities in Gansu Province 2018B-091Project supported by the Scientific Research Projects of Colleges and Universities in Gansu Province (No. 2018B-091) and the Teaching and Scientific Research Project of Lanzhou Petrochemical Poly Technic (No. JY2018-25)the Teaching and Scientific Research Project of Lanzhou Petrochemical Poly Technic JY2018-25

Figures(18)

  • Anodic oxidation of aryl iodine compouds is a green and efficient method for the synthesis of hypervalent iodine reagents. This method replaces chemical reagents with electric current, avoiding the use of expensive and handle difficult oxidants such as m-CPBA, H2O2, oxone, selectfluor etc. Electrochemically generated hypervalent iodine reagents can not only promote fluorination, oxidative cyclization, but also be successfully applied in the total synthesis of natural products. In addition, recyclable aryl iodine mediator can be used to indirect anodic fluorination and easily separated from products. The organic electrochemical synthesis of hypervalent iodine reagents and their applications in various chemical transformations are reviewed.
  • 加载中
    1. [1]

      (a) "Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis" in Topics in Current Chemistry, Vol. 373, Ed.: Wirth, T., Springer-Verlag, Switzerland, 2016,
      (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
      (c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
      (d) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
      (e) Duan, Y.-N.; Jiang, S.; Han, Y.-C.; Sun, B.; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973(in Chinese).
      (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
      (f) Zhang, H.; Tang, R.; Wu, J.; Hu, Y. Chemistry 2018, 681(in Chinese).
      (张怀远, 唐蓉萍, 伍家卫, 胡雨来, 化学通报, 2018, 681.)
      (g) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. J. Org. Chem. 2018, 38, 1586(in Chinese).
      (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586.)
      (h) Yan, Y.; Cui, C.; Li, Z. Chin. J. Org. Chem. 2018, 38, 2501(in Chinese).
      (闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501.)

    2. [2]

      (a) Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
      (b) Fujita, M.; Miura, K.; Sugimura, T. Beilstein J. Org. Chem. 2018, 14, 659.
      (c) Banik, S. M.; Mennie, K. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2017, 139, 9152.

    3. [3]

      Smith, D. C.; Vitaku, E.; Njardarson, J. T. Org. Lett. 2017, 19, 3508.  doi: 10.1021/acs.orglett.7b01479

    4. [4]

      Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.  doi: 10.1002/anie.201801132

    5. [5]

      (a) Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu. Y. J. Org. Chem. 2017, 82, 1600.
      (b) Chi, Y.; Zhang, W.-X.; Xi, Z. Org. Lett. 2014, 16, 6274.
      (c) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Chem.-Eur. J. 2017, 23, 757.
      (d) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Org. Lett. 2017, 19, 2694.
      (e) Alazet, S.; Vaillant, F. L.; Nicolai, S.; Courant, T.; Waser, J. Chem.-Eur. J. 2017, 23, 9501.
      (f) Colomer, I.; Batchelor-McAuley, C.; Odell, B.; Donohoe, T. J.; Compton, R. G. J. Am. Chem. Soc. 2016, 138, 8855.
      (g) Shen, H.; Deng, Q.; Liu, R.; Feng, Y.; Zheng, C.; Xiong, Y. Org. Chem. Front. 2017, 4, 1806.
      (h) Wang, Z.; Zhong, J.; Zheng, C.; Fan, R. Org. Chem. Front. 2017, 4, 1005.

    6. [6]

      Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 5337.  doi: 10.1039/C7OB00855D

    7. [7]

      Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.  doi: 10.1021/acscatal.7b03118

    8. [8]

      Zhang, H.; Wang, K.-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2019, 17, 2940.  doi: 10.1039/C9OB00236G

    9. [9]

      Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem.-Eur. J. 2016, 22, 4030.  doi: 10.1002/chem.201504844

    10. [10]

      Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413.  doi: 10.1002/anie.201507180

    11. [11]

      Martínez, C.; Bosnidou, A. E.; Allmendinger, S.; Muñiz, K. Chem.- Eur. J. 2016, 22, 9929.  doi: 10.1002/chem.201602138

    12. [12]

      Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Chichester, UK, 2013, pp. 21~143.

    13. [13]

      (a) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487.
      (b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
      (c) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57, 4149.
      (d) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
      (e) Elsherbini, M.; Wirth, T. Chem.-Eur. J. 2018, 24, 13399.
      (f) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
      (g) Chang, X.; Zhang, Q.; Guo, C. Org. Lett. 2019, 21, 10.
      (h) Lian, F.; Sun, C.; Xu, K.; Zeng, C. Org. Lett. 2019, 21, 156.

    14. [14]

      Stuart, D. R. Synlett 2017, 28, 275.

    15. [15]

      (a) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521.
      (b) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
      (c) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
      (d) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
      (e) Jalalian, N.; Olofsson, B. Tetrahedron 2010, 66, 5793.
      (f) Bouma, M. J.; Olofsson, B. Chem.-Eur. J. 2012, 18, 14242.

    16. [16]

      (a) Lindstedt, E.; Reitti, M.; Olofsson, B. J. Org. Chem. 2017, 82, 11909.
      (b) Laudadio, G.; Gemoets, H. P. L.; Hessel, V.; Noël, T. J. Org. Chem. 2017, 82, 11735.

    17. [17]

      Miller, L. L.; Hoffmann, A. K. J. Am. Chem. Soc. 1967, 89, 593.  doi: 10.1021/ja00979a022

    18. [18]

      Hoffelner, H.; Lorch, H. W.; Wendt, H. J. Electroanal. Chem. 1975, 66, 183.  doi: 10.1016/S0022-0728(75)80002-7

    19. [19]

      (a) Peacock, M. J.; Pletcher, D. Tetrahedron Lett. 2000, 41, 8995.
      (b) Peacock, M. J.; Pletcher, D. J. Electrochem. Soc. 2001, 148, D37.

    20. [20]

      (a) Folgueiras-Amador, A. A.; Philipps, K.; Guilbaud, S.; Poelakker, J.; Wirth, T. Angew. Chem., Int. Ed. 2017, 56, 15446.
      (b) Folgueiras-Amador, A. A.; Qian, X.-Y.; Xu, H.-C.; Wirth, T. Chem.-Eur. J. 2018, 24, 487.
      (c) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573.
      (d) Folgueiras-Amador, A. A.; Wirth, T. J. Flow Chem. 2017, 7, 94.
      (e) Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011, 7, 1108.

    21. [21]

      Schmidt, H.; Meinert, H. Angew. Chem. 1960, 72, 109.

    22. [22]

      Rozhkov, I. N. Russ. Chem. Rev. 1976, 45, 615.  doi: 10.1070/RC1976v045n07ABEH002697

    23. [23]

      Fuchigami, T.; Fujita, T. J. Org. Chem. 1994, 59, 7190.  doi: 10.1021/jo00103a003

    24. [24]

      Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.  doi: 10.1039/c3cs60464k

    25. [25]

      Fujita, T.; Fuchigami, T. Tetrahedron Lett. 1996, 37, 4725.  doi: 10.1016/0040-4039(96)00951-3

    26. [26]

      Hara, S.; Hatakeyama, T.; Chen, S.-Q.; Ishi-i, K.; Yoshida, M.; Sawaguchi, M.; Fukuhara, T.; Yoneda, N. J. Fluorine Chem. 1998, 87, 189.  doi: 10.1016/S0022-1139(97)00144-9

    27. [27]

      Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.  doi: 10.1021/acs.orglett.8b03682

    28. [28]

      (a) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Adv. Synth. Catal. 2010, 352, 2757.
      (b) Sawamura, T.; Kuribayashi S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644.

    29. [29]

      (a) Amano, Y.; Nishiyama, S. Tetrahedron Lett. 2006, 47, 6505.
      (b) Nishihama, Y.; Amano, Y.; Ogamino, T.; Nishiyama, S. Electrochemistry 2006, 74, 609.
      (c) Kajiyama, D.; Saitoh, T.; Nishiyama, S. Electrochemistry 2013, 81, 319.

    30. [30]

      (a) Amano, Y.; Nishiyama, S. Heterocycles 2008, 75, 1997.
      (b) Amano, Y.; Inoue, K.; Nishiyama, S. Synlett 2008, 134.
      (c) Izawa, T.; Nishiyama, S.; Yamamura, S. Tetrahedron 1994, 50, 13593.
      (d) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
      (e) Inoue, K.; Ishikawa, Y.; Nishiyama, S. Org. Lett. 2010, 12, 436.
      (f) Kajiyama, D.; Saitoh, T.; Yamaguchi, S.; Nishiyama, S. Synthesis 2012, 44, 1667.
      (g) Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779.

    31. [31]

      Möckel, R.; Babaoglu, E.; Hilt, G. Chem.-Eur. J. 2018, 24, 15781.  doi: 10.1002/chem.201804152

    32. [32]

      (a) Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896.
      (b) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. J. Org. Chem. 2017, 82, 11669.

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    5. [5]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    20. [20]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

Metrics
  • PDF Downloads(54)
  • Abstract views(2385)
  • HTML views(665)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return