Citation: Shi Zhaojiang, Wang Lianhui, Cui Xiuling. Recent Advances in the I2-Catalyzed C-H Bond Functionalizations[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1596-1612. doi: 10.6023/cjoc201902001 shu

Recent Advances in the I2-Catalyzed C-H Bond Functionalizations

  • Corresponding author: Wang Lianhui, lianhui.wang@hqu.edu.cn Cui Xiuling, cuixl@hqu.edu.cn
  • Received Date: 10 April 2019
    Revised Date: 24 April 2019
    Available Online: 6 June 2019

    Fund Project: the National Natural Science Foundation of China 21602064the Science and Technology Project of Quanzhou City 2018C073RProject supported by the National Natural Science Foundation of China (Nos. 21602064, 21572072), the Science and Technology Project of Quanzhou City (No. 2018C073R), and the Postgraduates Innovative Fund in Scientific Research of Huaqiao Universitythe National Natural Science Foundation of China 21572072

Figures(20)

  • Heterocyclic compounds are widely applied in medicine, fine chemical engineering and the related industrial fields. Consequently, the development of efficient strategies for heterocycle constructions continues to be of great appeal in organic synthesis. In recent years, the I2-catalyzed direct C-H bond functionalizations have emerged as one of the most efficient synthetic protocols to construct diverse heterocycles. In this review, the recent advances in I2-catalyzed C-H bond functionalizations by the types of C-C and C-N/O/S bond formations are summarized, and an outlook of this research filed is given.
  • 加载中
    1. [1]

      (a) Yang, L.; Huang, H.-M. Chem. Rev. 2015, 115, 3468.
      (b) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764.
      (c) Yang, Q.; Wang, Q.; Yu, Z. Chem. Soc. Rev. 2015, 44, 2305.
      (d) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.

    2. [2]

    3. [3]

      (a) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4, 3910.
      (b) Xu, Z.; Wang, D.-S.; Yu, X.; Yang, Y.; Wang, D. Adv. Synth. Catal. 2017, 359, 3332.
      (c) Ye, D.; Huang, R.; Zhu, H.; Zou, L.-H.; Wang, D. Org. Chem. Front. 2019, 6, 62.
      (d) Ge, C.; Sang, X.; Yao, W.; Zhang, L.; Wang, D. Green Chem. 2018, 20, 1805.
      (e) Wu, Q.; Pan, L.; Du, G.; Zhang, C.; Wang, D. Org. Chem. Front. 2018, 5, 2668.
      (f) Hu, X.; Zhu, H.; Sang, X.; Wang, D. Adv. Synth. Catal. 2018, 360, 4293.
      (g) Xu, Z.; Yu, X.; Sang, X.; Wang, D. Green Chem. 2018, 20, 2571.

    4. [4]

      (a) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376.
      (b)Yan, Y.; Xu, K.; Fang, Y.; Wang, Z.-Y. J. Org. Chem. 2011, 76, 6849.
      (c) Wang, D.; Ge, B.; Li, L.; Shan, J.; Ding, Y. J. Org. Chem. 2014, 79, 8607.

    5. [5]

      Zhang, Z.; Liu, Q. Prog. Chem. 2006, 18, 270 (in Chinese).  doi: 10.3321/j.issn:1005-281X.2006.02.016

    6. [6]

      (a) Von Der Heiden, D.; Bozkus, S.; Klussmann, M.; Breugst, M. J. Org. Chem. 2017, 82, 4037.
      (b) Hao, W.-J.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2013, 3, 2501.

    7. [7]

      Yasui, K.; Kato, T.; Kojima, K.; Nagasawa, K. Chem. Commun. 2015, 51, 2290.  doi: 10.1039/C4CC08581G

    8. [8]

      Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.  doi: 10.1002/anie.201101522

    9. [9]

      Varszegi, C.; Ernst, M.; Van Laar, F.; Sels, B. F.; Schwab, E.; De Vos, D. E. Angew. Chem., Int. Ed. 2008, 47, 1477.  doi: 10.1002/(ISSN)1521-3773

    10. [10]

      Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.  doi: 10.1021/acs.joc.7b00073

    11. [11]

      Wu, W.; An, Y.; Li, J.; Yang, S.; Zhu, Z.; Jiang, H. Org. Chem. Front. 2017, 4, 1751.  doi: 10.1039/C7QO00326A

    12. [12]

      Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.  doi: 10.1021/ol100954x

    13. [13]

      Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem., Int. Ed. 2012, 51, 8077.  doi: 10.1002/anie.v51.32

    14. [14]

      Lamani, M.; Prabhu, K. R. J. Org. Chem. 2011, 76, 7938.  doi: 10.1021/jo201402a

    15. [15]

      Fei, Z.; Zhu, Y.-P.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Tetrahedron Lett. 2013, 54, 1222.  doi: 10.1016/j.tetlet.2012.12.072

    16. [16]

      Harrison, T. S.; Keating, G. M. CNS Drugs 2005, 19, 65.  doi: 10.2165/00023210-200519010-00008

    17. [17]

      Yan, Y.; Xu, Y.; Niu, B.; Xie, H.-F.; Liu, Y. J. Org. Chem. 2015, 80, 5581.  doi: 10.1021/acs.joc.5b00474

    18. [18]

      Mohammed, S.; Vishwakarma, R. A.; Bharate, S. B. J. Org. Chem. 2015, 80, 6915.  doi: 10.1021/acs.joc.5b00989

    19. [19]

      Mhaske, S. B.; Argade, N. P. Tetrahedron 2006, 62, 9787.  doi: 10.1016/j.tet.2006.07.098

    20. [20]

      Beukeaw, D.; Udomsasporn, K.; Yotphan, S. J. Org. Chem. 2015, 80, 3447.  doi: 10.1021/jo502933e

    21. [21]

      Yang, L.; Shi, X.; Hu, B.-Q.; Wang, L.-X. Asian J. Org. Chem. 2016, 5, 494.  doi: 10.1002/ajoc.201600041

    22. [22]

      (a) Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Eur. J. Med. Chem. 2015, 90, 124;
      (b) He, L.; Li, H.; Chen, J.; Wu, X.-F. RSC Adv. 2014, 4, 12065;
      (c) Connolly, D. J.; Cusack, D.; O'sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153.

    23. [23]

      Nguyen, T. B.; Ermolenko, L.; Retailleau, P.; Al-Mourabit, A. Org. Lett. 2016, 18, 2177.  doi: 10.1021/acs.orglett.6b00823

    24. [24]

      Xiong, M.; Gao, Z.; Liang, X.; Cai, P.; Zhu, H.; Pan, Y. Chem. Commun. 2018, 54, 9679.  doi: 10.1039/C8CC05320K

    25. [25]

      Chen, Z.; Li, H.; Dong, W.; Miao, M.; Ren, H. Org. Lett. 2016, 18, 1334.  doi: 10.1021/acs.orglett.6b00277

    26. [26]

      Yang, Z.-Y.; Tian, T.; Du, Y.-F.; Li, S. Y.; Chu, C.-C.; Chen, L.-Y.; Li, D.; Liu, J.-Y.; Wang, B. Chem. Commun. 2017, 53, 8050.  doi: 10.1039/C7CC03983B

    27. [27]

      (a) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151.
      (b) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Alvarez, M. Chem. Eur. J. 2011, 17, 1388.

    28. [28]

      Baig, M. F.; Shaik, S. P.; Nayak, V. L.; Alarifi, A.; Kamal, A. Bioorg. Med. Chem. Lett. 2017, 27, 4039.  doi: 10.1016/j.bmcl.2017.07.051

    29. [29]

      Yi, X.; Xi, C. Tetrahedron 2017, 73, 1311.  doi: 10.1016/j.tet.2017.01.035

    30. [30]

      Gupta, A.; Deshmukh, M. S.; Jain, N. J. Org. Chem. 2017, 82, 4784.  doi: 10.1021/acs.joc.7b00464

    31. [31]

      Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.  doi: 10.1016/j.ejmech.2014.04.047

    32. [32]

      Zhu, D.; Luo, W.-K.; Yang, L.; Ma, D.-Y. Org. Biomol. Chem. 2017, 15, 7112.  doi: 10.1039/C7OB01539A

    33. [33]

      Chen, K.; Gao, B.; Shang, Y.; Du, J.; Gu, Q.; Wang, J. Org. Biomol. Chem. 2017, 15, 8770.  doi: 10.1039/C7OB02038D

    34. [34]

      Gao, W.-C.; Zhao, J.-J.; Chang, H.-H.; Li, X.; Liu, Q.; Wei, W.-L. RSC Adv. 2014, 4, 49329.  doi: 10.1039/C4RA09821H

    35. [35]

      Zhao, X.; Zhang, L.; Li, T.; Liu, G.; Wang, H.; Lu, K. Chem. Commun. 2014, 50, 13121.  doi: 10.1039/C4CC05237D

    36. [36]

      Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G.-J. Org. Lett. 2014, 16, 50.  doi: 10.1021/ol402987u

    37. [37]

      Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014, 356, 364.  doi: 10.1002/adsc.201300773

    38. [38]

      Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem. 2014, 79, 10605.  doi: 10.1021/jo501778h

    39. [39]

      Cao, H.; Yuan, J.; Liu, C.; Hu, X.; Lei, A. RSC Adv. 2015, 5, 41493.  doi: 10.1039/C5RA04906G

    40. [40]

      (a) Jereb, M.; Togni, A. Org. Lett. 2005, 7, 4041.
      (b) Wang, W.; Li, H.; Wang, J.; Liao, L. Tetrahedron Lett. 2004, 45, 8229.

    41. [41]

      Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.  doi: 10.1021/acs.joc.6b01487

    42. [42]

      Pang, X.; Xiang, L.; Yang, X.; Yan, R. Adv. Synth. Catal. 2016, 358, 321.  doi: 10.1002/adsc.201500943

    43. [43]

      Yang, D.; Sun, P.; Wei, W.; Meng, L.; He, L.; Fang, B.; Jiang, W.; Wang, H. Org. Chem. Front. 2016, 3, 1457.  doi: 10.1039/C6QO00407E

    44. [44]

      Wu, S.-S.; Feng, C.-T.; Hu, D.; Huang, Y.-K.; Li, Z.; Luo, Z.-G.; Ma, S.-T. Org. Biomol. Chem. 2017, 15, 1680.  doi: 10.1039/C6OB02736A

    45. [45]

      Yu, H; Pi. C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124 (in Chinese).
       

    46. [46]

      Vuppalapati, S. V. N.; Lee, Y. R. Tetrahedron 2012, 68, 8286.  doi: 10.1016/j.tet.2012.07.051

    47. [47]

      (a) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
      (b) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2003, 2209.

    48. [48]

      Zhu, Y.-P.; Liu, M.-C.; Jia, F.-C.; Yuan, J.-J.; Gao, Q.-H.; Lian, M.; Wu, A.-X. Org. Lett. 2012, 14, 3392.  doi: 10.1021/ol301366p

    49. [49]

      Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Org. Lett. 2013, 15, 574.  doi: 10.1021/ol303389t

    50. [50]

      Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.  doi: 10.1021/ol4001153

    51. [51]

      Raghavender Reddy, M.; Nageswara Rao, N.; Ramakrishna, K.; Meshram, H. M. Tetrahedron Lett. 2014, 55, 1898.  doi: 10.1016/j.tetlet.2014.01.137

    52. [52]

      Gao, Y.; Song, Q.; Cheng, G.; Cui, X. Org. Biomol. Chem. 2014, 12, 1044.  doi: 10.1039/C3OB42318B

    53. [53]

      Huang, H.-Y.; Wu, H.-R.; Wei, F.; Wang, D.; Liu, L. Org. Lett. 2015, 17, 3702.  doi: 10.1021/acs.orglett.5b01662

    54. [54]

      Zhang, Z.; Pi, C.; Tong, H.; Cui, X.; Wu, Y. Org. Lett. 2017, 19, 440.  doi: 10.1021/acs.orglett.6b03399

    55. [55]

      Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.  doi: 10.1021/ja902762a

    56. [56]

      Liu, B.; Cheng, J.; Li, Y.; Li, J.-H. Chem. Commun. 2019, 55, 667.  doi: 10.1039/C8CC09271K

    57. [57]

      Yang, F.; Wang, F.; Wang, T.; Wang, Y.; Tian, S. Chem. Commun. 2014, 50, 2111.  doi: 10.1039/c3cc48961b

    58. [58]

      Choudhuri, K.; Achar, T. K.; Mal, P. Adv. Synth. Catal. 2017, 359, 3566.  doi: 10.1002/adsc.v359.20

    59. [59]

      Xue, W.-J.; Zheng, K.-L.; Li, H.-Z.; Gao, F.-F.; Wu, A.-X. Tetrahedron Lett. 2014, 55, 4212.  doi: 10.1016/j.tetlet.2014.05.101

    60. [60]

      Samanta, S.; Donthiri, R. R.; Dinda, M.; Adimurthy, S. RSC Adv. 2015, 5, 66718.  doi: 10.1039/C5RA13441B

    61. [61]

      Liang, Y.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. Org. Lett. 2015, 17, 876.  doi: 10.1021/ol5037387

    62. [62]

      Wu, Y.-H.; Wu, Q.-L.; Wang, W.-P.; Wang, X.-C.; Quan, Z.-J. Adv. Synth. Catal. 2018, 360, 2382.  doi: 10.1002/adsc.201800303

    63. [63]

      Bao, Y.; Yang, X.; Zhou, Q.; Yang, F. Org. Lett. 2018, 20, 1966.  doi: 10.1021/acs.orglett.8b00511

    64. [64]

      Du, S.; Pi. C.; Wan, T.; Wu, Y.; Cui, X. Adv. Synth. Catal. 2019, 361, 1766.  doi: 10.1002/adsc.v361.8

    65. [65]

      Jiang, H.; Huang, H.; Cao, H.; Qi, C. Org. Lett. 2010, 12, 5561.  doi: 10.1021/ol1023085

    66. [66]

      (a) Jin, Z. Nat. Prod. Rep. 2006, 23, 464.
      (b) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126.
      (c) Wipf, P. Chem. Rev. 1995, 95, 2115.

    67. [67]

      Xu, W.; Kloeckner, U.; Nachtsheim, B. J. J. Org. Chem. 2013, 78, 6065.  doi: 10.1021/jo400753n

    68. [68]

      Gao, Q.-H.; Fei, Z.; Zhu, Y.-P.; Lian, M.; Jia, F.-C.; Liu, M.-C.; She, N.-F.; Wu, A.-X. Tetrahedron 2013, 69, 22.  doi: 10.1016/j.tet.2012.10.072

    69. [69]

      Wu, X.; Gao, Q.; Liu, S.; Wu, A. Org. Lett. 2014, 16, 2888.  doi: 10.1021/ol501029w

    70. [70]

      Du, B.; Sun, P.-P. Sci. China Chem. 2014, 57, 1176.  doi: 10.1007/s11426-014-5098-7

    71. [71]

      Rajeshkumar, V.; Chandrasekar, S.; Sekar, G. Org. Biomol. Chem. 2014, 12, 8512.  doi: 10.1039/C4OB01564A

    72. [72]

      (a) Millemaggi, A.; Taylor, R. J. K. Eur. J. Org. Chem. 2010, 2010, 4527.
      (b) Silva, J. F. M. D.; Garden, S. J.; Pinto, A. C. J. Braz. Chem. Soc. 2001, 12, 273.
      (c) Sumpter, W. C. Chem. Rev. 1944, 34, 393.

    73. [73]

      Mupparapu, N.; Vishwakarma, R. A.; Ahmed, Q. N. Tetrahedron 2015, 71, 3417.  doi: 10.1016/j.tet.2015.03.088

    74. [74]

      (a) Kim, Y. H.; Kim, S. H. Tetrahedron Lett. 1995, 36, 6895.
      (b) Pansare, S. V.; Gnana Ravi, R. Tetrahedron Lett. 1995, 36, 5959.
      (c) Sai, K. K.; Esteves, P. M.; Da Penha, E. T.; Klumpp, D. A. J. Org. Chem. 2008, 73, 6506.

    75. [75]

      Nachtsheim, B.; Finkbeiner, P. Synthesis 2013, 45, 979.  doi: 10.1055/s-00000084

    76. [76]

      Luo, W.; Shi, X.; Zhou, W.; Yang, L. Org. Lett. 2016, 18, 2036.  doi: 10.1021/acs.orglett.6b00646

    77. [77]

      Wang, H.-X.; Wei, T.-Q.; Xu, P.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2018, 83, 13491.  doi: 10.1021/acs.joc.8b02395

    78. [78]

      Zhu, Y.-P.; Lian, M.; Jia, F.-C.; Liu, M.-C.; Yuan, J.-J.; Gao, Q.-H.; Wu, A.-X. Chem. Commun. 2012, 48, 9086.  doi: 10.1039/c2cc34561g

    79. [79]

      Li, H.-Z.; Xue, W.-J.; Wu, A.-X. Tetrahedron 2014, 70, 4645.  doi: 10.1016/j.tet.2014.05.045

    80. [80]

      Geng, X.; Wu, X.; Wang, C.; Zhao, P.; Zhou, Y.; Sun, X.; Wang, L. J.; Guan, W. J.; Wu, Y. D.; Wu, A. X. Chem. Commun. 2018, 54, 12730.  doi: 10.1039/C8CC07599A

    81. [81]

      Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.-J. J. Org. Chem. 2015, 80, 8217.  doi: 10.1021/acs.joc.5b01280

    82. [82]

      Sun, P.; Yang, D.; Wei, W.; Sun, X.; Zhang, W.; Zhang, H.; Wang, Y.; Wang, H. Tetrahedron 2017, 73, 2022.  doi: 10.1016/j.tet.2017.02.046

    83. [83]

      Xu, Y.; Li, B.; Zhang, X.; Fan, X. J. Org. Chem. 2017, 82, 9637.  doi: 10.1021/acs.joc.7b01683

    84. [84]

      Zhao, J.; Huang, H.; Wu, W.; Chen, H.; Jiang, H. Org. Lett. 2013, 15, 2604.  doi: 10.1021/ol400773k

    85. [85]

      Kumar, A.; Gupta, L. P.; Kumar, M. RSC Adv. 2013, 3, 18771.  doi: 10.1039/c3ra42761g

    86. [86]

      Zhang, Z.; Xie, C.; Tan, X.; Song, G.; Wen, L.; Gao, H.; Ma, C. Org. Chem. Front. 2015, 2, 942.  doi: 10.1039/C5QO00124B

    87. [87]

      Reddy, N. N. K.; Mohan, D. C.; Adimurthy, S. Tetrahedron Lett. 2016, 57, 1074.  doi: 10.1016/j.tetlet.2016.01.082

    88. [88]

      (a) Henry, J. B.; Macdonald, R. J.; Gibbad, H. S.; Mcnab, H.; Mount, A. R. Phys. Chem. Chem. Phys. 2011, 13, 5235.
      (b) Liu, B.; Wang, Z.; Wu, N.; Li, M.; You, J.; Lan, J. Chem. Eur. J. 2012, 18, 1599.

    89. [89]

      (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
      (b) Hazra, A.; Mondal, S.; Maity, A.; Naskar, S.; Saha, P.; Paira, R.; Sahu, K. B.; Paira, P.; Ghosh, S.; Sinha, C.; Samanta, A.; Banerjee, S.; Mondal, N. B. Eur. J. Med. Chem. 2011, 46, 2132.
      (c) Wang, H.; Guo, S.; Qian, D.; Qian, Y.; Duan, J. A. J. Pharm. Biomed. Anal. 2012, 67~68, 16.

    90. [90]

      Mani, G. S.; Shaik, S. P.; Tangella, Y.; Bale, S.; Godugu, C.; Kamal, A. Org. Biomol. Chem. 2017, 15, 6780.  doi: 10.1039/C7OB01384A

    91. [91]

      Gao, Q.; Liu, Z.; Wang, Y.; Wu, X.; Zhang, J.; Wu, A. Adv. Synth. Catal. 2018, 360, 1364.  doi: 10.1002/adsc.v360.7

    92. [92]

      Gao, Q.; Wang, Y.; Wang, Q.; Zhu, Y.; Liu, Z.; Zhang, J. Org. Biomol. Chem. 2018, 16, 9030.  doi: 10.1039/C8OB02230E

  • 加载中
    1. [1]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(12)
  • Abstract views(1009)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return