Citation: Wu Fan, Huang Wenchao, Zhuo Kaiyue, Hua Yuhui, Lin Jianfeng, He Guomei, Chen Jiangxi, Nie Liming, Xia Haiping. Carbolong Complexes as Photothermal Materials[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1743-1752. doi: 10.6023/cjoc201901048 shu

Carbolong Complexes as Photothermal Materials

  • Corresponding author: He Guomei, gmhe@xmu.edu.cn Nie Liming, nielm@xmu.edu.cn Xia Haiping, hpxia@xmu.edu.cn
  • Received Date: 28 January 2019
    Revised Date: 13 March 2019
    Available Online: 21 June 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21302158, U1705254, 21490573)the National Natural Science Foundation of China U1705254the National Natural Science Foundation of China 21490573the National Natural Science Foundation of China 21302158

Figures(7)

  • A series of photothermal cyclobutaosmapentalenes with conjugated groups attached to the metallacycle were synthesized from the reaction of OsCl2(PPh3)3 with an organic multiyne and PPh3, followed by a[2+2] cycloaddition with terminal alkynes. These highly conjugated metallacycles showed broad UV-Vis absorption and good photothermal efficiency. These easily synthesized metallacycles represent a type of new photothermal material.
  • 加载中
    1. [1]

      For reviews see: (a) Frogley, B. J.; Wright, L. J. Chem.-Eur. J. 2018, 24, 2025.
      (b) Frogley, B. J.; Wright, L. J. Coord. Chem. Rev. 2014, 270, 151.
      (c) Cao, X.; Zhao, Q.; Lin, Z.; Xia, H. Acc. Chem. Res. 2014, 47, 341.
      (d) Zhu, C.; Cao, X.; Xia, H. Chin. J. Org. Chem. 2013, 33, 657 (in Chinese).
      (朱从青, 曹晓宇, 夏海平, 有机化学, 2013, 33, 657.)
      (e) Dalebrook, A. F.; Wright, L. J. Adv. Organomet. Chem. 2012, 60, 93.
      (f) Paneque, M.; Poveda, M. L.; Rendón, N. Eur. J. Inorg. Chem. 2011, 1, 19.
      (g) Bleeke, J. R. Acc. Chem. Res. 2007, 40, 1035.
      (h) Wright, L. J. Dalton Trans. 2006, 15, 1821.
      (i) Landorf, C. W.; Haley, M. M. Angew. Chem., Int. Ed. 2006, 45, 3914.
      (j) He, G.; Xia, H.; Jia, G. Chin. Sci. Bull. 2004, 49, 1543.
      (k) Bleeke, J. R. Chem. Rev. 2001, 101, 1205.
      (l) Bleeke, J. R. Acc. Chem. Res. 1991, 24, 271.
      (m) Fernández, I.; Frenking, G.; Merino, G. Chem. Soc. Rev. 2015, 44, 6452.
      (n) Feixas, F.; Matito, E.; Poater, J.; Solà, M. Chem. Soc. Rev. 2015, 44, 6434.

    2. [2]

      See for examples: (a) Frogley, B. J.; Perera, L. C.; Wright, L. J. Chem.-Eur. J. 2018, 24, 4304.
      (b) García-Rodeja, Y.; Fernández, I. Chem.-Eur. J. 2017, 23, 6634.
      (c) Frogley, B. J.; Wright, L. J. Angew. Chem., Int. Ed. 2017, 56, 143.
      (d) Huang, J.; Zhou, X.; Zhao, Q.; Li, S.; Xia, H. Chin. J. Chem. 2017, 35, 420.
      (e) Han, F.; Li, J.; Zhang, H.; Wang, T.; Lin, Z.; Xia, H. Chem.-Eur. J. 2015, 21, 565.
      (f) Lin, R.; Lee, K. H.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Organometallics 2015, 34, 167.
      (g) Vivancos, Á.; Hernández, Y.; Paneque, A. M.; Poveda, M. L.; Salazar, V.; Álvarez, E. Organometallics 2015, 34, 177.
      (h) Han, F.; Wang, T.; Li, J.; Zhang, H.; Xia, H. Chem.-Eur. J. 2014, 20, 4363.
      (i) Lin, R.; Lee, K.; Poon, K. C.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Chem.-Eur. J. 2014, 20, 14885.
      (j) Vivancos, Á.; Paneque, M.; Poveda, M. L.; Álvarez, E. Angew. Chem., Int. Ed. 2013, 52, 10068.
      (k) Wang, T.; Zhang, H.; Han, F.; Long, L.; Lin, Z.; Xia, H. Chem.-Eur. J. 2013, 19, 10982.
      (l) Wang, T.; Zhang, H.; Han, F.; Long, L.; Lin, Z.; Xia, H. Angew. Chem., Int. Ed. 2013, 52, 9251.
      (m) Poon, K. C.; Liu, L.; Guo, T.; Li, J.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Angew. Chem., Int. Ed. 2010, 49, 2759.
      (n) Clark, G. R.; Ferguson, L. A.; Mclntosh, A. E.; Sohnel, T.; Wright, L. J. J. Am. Chem. Soc. 2010, 132, 13443.
      (o) Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendón, N.; Salazar, V.; Oñ ate, E.; Mereiter, K. J. Am. Chem. Soc. 2003, 125, 9898.
      (p) Jacob, V.; Weakley, T. J. R.; Haley, M. M. Angew. Chem., Int. Ed. 2002, 41, 3470.
      (q) Gilbertson, R. D.; Weakley, T. J. R.; Haley, M. M. Chem.-Eur. J. 2000, 6, 437.
      (r) Gilbertson, R. D.; Weakley, T. J. R.; Haley, M. M. J. Am. Chem. Soc. 1999, 121, 2597.
      (s) Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 0, 811.

    3. [3]

      For reviews see: (a) Jia, G. Organometallics 2013, 32, 6852.
      (b) Chen, J.; He, G.; Jia, G. Chin. J. Org. Chem. 2013, 33, 792 (in Chinese).陈江溪, 何国梅, 贾国成, 有机化学, 2013, 33, 792.)
      (c) Chen, J.; Jia, G. Coord. Chem. Rev. 2013, 257, 2491.
      (d) Jia, G. Coord. Chem. Rev. 2007, 251, 2167.
      (e) Jia, G. Acc. Chem. Res. 2004, 37, 479.

    4. [4]

      See for examples: (a) Ruan, W.; Leung, T.-F.; Shi, C.; Lee, K. H.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Chem. Sci. 2018, 9, 5994.
      (b) Wen, T. B.; Lee, K.-H.; Chen, J.; Hung, W. Y.; Bai, W.; Li, H.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Organometallics 2016, 35, 1514.
      (c) Chen, J.; Lee, K.-H.; Wen, T. B.; Gao, F.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Organometallics 2015, 34, 890.
      (d) Chen, J.; Shi, C.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Chem.-Eur. J. 2012, 18, 14128.
      (e) Chen, J.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Angew. Chem., Int. Ed. 2011, 50, 10675.
      (f) Hung, W. Y.; Liu, B.; Shou, W.; Wen, T. B.; Shi, C.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. J. Am. Chem. Soc. 2011, 133, 18350.
      (g) Liu, B.; Xie, H.; Wang, H.; Wu, L.; Zhao, Q.; Chen, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5461.
      (h) He, G.; Zhu, J.; Hung, W. Y.; Wen, T. B.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Angew. Chem., Int. Ed. 2007, 46, 9065.
      (i) Wen, T. B.; Hung, W. Y.; Sung, H. H. Y.; Williams, I. D.; Jia, G. J. Am. Chem. Soc. 2005, 127, 2856.
      (j) Wen, T. B.; Ng, S. M.; Hung, W. Y.; Zhou, Z. Y.; Lo, M. F.; Shek, L.-Y.; Williams, I. D.; Lin, Z.; Jia, G. J. Am. Chem. Soc. 2003, 125, 884.
      (k) Wen, T. B.; Zhou, Z. Y.; Jia, G. Angew. Chem., Int. Ed. 2001, 40, 1951.

    5. [5]

      (a) Wei, J.; Zhang, Y.; Chi, Y.; Liu, L.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2016, 138, 60.
      (b) Aztatzi, R. G.; Mercero, J. M.; Matito, E.; Frenking, G.; Ugalde, J. M. Phys. Chem. Chem. Phys. 2017, 19, 9669.
      (c) An, K.; Shen, T.; Zhu, J. Organometallics 2017, 36, 3199.
      (d) Chen, J.; Lee, K.-H.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Angew. Chem., Int. Ed. 2016, 55, 7194.
      (e) Wei, J.; Zhang, W.; Xi, Z. Chem. Sci. 2018, 9, 560.
      (f) Ma, W.; Yu, C.; Chi, Y.; Chen, T.; Wang, L.; Yin, J.; Wei, B.; Xu, L.; Zhang, W.; Xi, Z. Chem. Sci. 2017, 8, 6852.
      (g) Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.; Xi, Z. Chem. Soc. Rev. 2017, 46, 1160.
      (h) Wei, J.; Zhang, W.; Xi, Z. Angew. Chem., Int. Ed. 2015, 54, 5999.
      (i) Wei, J.; Zhang, Y.; Zhang, W.; Xi, Z. Angew. Chem., Int. Ed. 2015, 54, 9986.
      (j) Wang, H.; Zhou, X.; Xia, H. Chin. J. Chem. 2018, 36, 93.
      (k) Zheng, S.; Chu, Z.; Lee, K.-H.; Lin, Q.; Li, Y.; He, G.; Chen, J.; Jia, G. ChemPlusChem 2019, 84, 85.

    6. [6]

      (a) Hua, Y.; Lan, Q.; Fei, J.; Tang, C.; Lin, J.; Zha, H.; Chen, S.; Lu, Y.; Chen, J.; He, X.; Xia. H. Chem.-Eur. J. 2018, 24, 14531.
      (b) Zhou, X.; Li, Y.; Shao, Y.; Hua, Y.; Zhang, H.; Lin, Y.; Xia, H. Organometallics 2018, 37, 1788.
      (c) Li, J.; Kang, H.; Zhuo, K.; Zhuo, Q.; Zhang, H.; Lin, Y.-M.; Xia, H. Chin. J. Chem. 2018, 36, 1156.
      (d) Mauksch, M.; Tsogoeva, B. S. Chem.-Eur. J. 2010, 16, 7843.
      (f) Chen, J.; Lin, Q.; Li, S.; Lu, Z.; Lin, J.; Chen, Z.; Xia, H. Organometallics 2018, 37, 618.
      (g) Zhou, X.; Wu, J.; Hao, Y.; Zhu, C.; Zhuo, Q.; Xia, H.; Zhu, J. Chem.-Eur. J. 2018, 24, 2389.
      (h) Zhu, C.; Zhu, J.; Zhou, X.; Zhu, Q.; Yang, Y.; Wen, T. B.; Xia, H. Angew. Chem., Int. Ed. 2018, 57, 3154.
      (i) Lu, Z.; Zhu, C.; Cai, Y.; Zhu, J.; Hua, Y.; Chen, Z.; Chen, J.; Xia, H. Chem.-Eur. J. 2017, 23, 6426.
      (j) Zhu, C.; Zhu, Q.; Fan, J.; Zhu, J.; He, X.; Cao, X. Y.; Xia, H. Angew. Chem., Int. Ed. 2014, 53, 6232.
      (k) Luo, M.; Long, L.; Zhang, H.; Yang, Y.; Hua, Y.; Liu, G.; Lin, Z.; Xia, H. J. Am. Chem. Soc. 2017, 159, 1822.
      (l) Zhu, C.; Wu, J.; Li, S.; Yang, Y.; Zhu, J.; Lu, X.; Xia, H. Angew. Chem., Int. Ed. 2017, 56, 9067.
      (m) Zhu, Q.; Zhu, C.; Deng, Z.; He, G.; Chen, J.; Zhu, J.; Xia, H. Chin. J. Chem. 2017, 35, 628.
      (n) Luo, M.; Zhu, C.; Chen, L.; Zhang, H.; Xia, H. Chem. Sci. 2016, 7, 1815.
      (o) Zhu, C.; Zhou, X.; Xing, H.; An, K.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 3102.
      (p) Zhu, C.; Yang, Y.; Wu, J.; Luo, M.; Fan, J.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 7189.
      (q) Zhu, C.; Luo, M.; Zhu, Q.; Zhu, J.; Schleyer, P. v. R.; Wu, J. I.-C.; Lu, X.; Xia, H. Nat. Commun. 2014, 5, 3265.
      (r) Hua, Y.; Zhang, H.; Xia, H. Chin. J. Org. Chem. 2018, 38, 11 (in Chinese).
      (华煜晖, 张弘, 夏海平, 有机化学, 2018, 38, 11.)
      (s) Zhu, C.; Xia, H. Acc. Chem. Res. 2018, 51, 1691.
      (t) Lu, Z.; Chen, J.; Xia, H. Chin. J. Org. Chem. 2017, 37, 1181 (in Chinese).
      (路正宇, 陈江溪, 夏海平, 有机化学, 2017, 37, 1181.

    7. [7]

      (a) Zhou, X.; Wu, J.; Hao, Y.; Zhu, C.; Zhuo, Q.; Xia, H.; Zhu, J. Chem.-Eur. J. 2018, 24, 2296.
      (b) Ritter, S. K. C & EN 2016, 94, 9.
      (c) Xia, H. Chin. J. Chem. 2018, 36, 78.

    8. [8]

      Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.  doi: 10.1038/nchem.1690

    9. [9]

      Li, R.; Lu, Z.; Cai, Y.; Jiang, F.; Tang, C.; Chen, Z.; Zheng, J.; Pi, J.; Zhang, R.; Liu, J.; Chen, Z.-B.; Yang, Y.; Shi, J.; Hong, W.; Xia, H. J. Am. Chem. Soc. 2017, 139, 14344.  doi: 10.1021/jacs.7b06400

    10. [10]

      (a) Zhu, C.; Yang, Y.; Luo, M.; Yang, C.; Wu, J.; Chen, L.; Liu, G.; Wen, T. B.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 6181.
      (b) Lu, Z.; Lin, Q.; Cai, Y.; Chen, S.; Chen, J.; Wu, W.; He, X.; Xia, H. ACS Macro Lett. 2018, 7, 1034.
      (c) Lu, Z.; Cai, Y.; Wei, Y.; Lin, Q.; Chen, J.; He, X.; Li, S.; Wu, W.; Xia, H. Polym. Chem. 2018, 9, 2092.
      (d) Lin, Q.; Li, S.; Lin, J.; Chen, M.; Lu, Z.; Tang, C.; Chen, Z.; He, X.; Chen, J.; Chem.-Eur. J. 2018, 24, 8375.
      (e) He, X.; He, X.; Li, S.; Zhuo, K.; Qin, W.; Dong, S.; Chen, J.; Ren, L.; Liu, G.; Xia, H. Polym. Chem. 2017, 8, 3674.

    11. [11]

      (a) Yang, C.; Lin, G.; Zhu, C.; Pang, X.; Zhang, Y.; Wang, X.; Li, X.; Wang, B.; Xia, H.; Liu, G. J. Mater. Chem. B 2018, 6, 2528.
      (b) Zhu, C.; Yang, C.; Wang, Y.; Lin, G.; Yang, Y.; Wang, X.; Zhu, J.; Chen, X.; Lu, X.; Liu, G.; Xia, H. Sci. Adv. 2016, 2, e1601031.

    12. [12]

      Li, N.; Zhao, P.; Astruc, D. Angew. Chem., Int. Ed. 2014, 53, 1756.  doi: 10.1002/anie.201300441

    13. [13]

      Zhuo, Q.; Lin, J.; Hua, Y.; Zhou, X.; Shao, Y.; Chen, S.; Chen, Z.; Zhu, J.; Zhang, H.; Xia, H. Nat. Commun. 2017, 8, 1912.  doi: 10.1038/s41467-017-02120-z

    14. [14]

      Zhuo, Q.; Zhang, H.; Hua, Y.; Kang, H.; Zhou, X.; Lin, X.; Chen, Z.; Lin, J.; Zhuo, K.; Xia, H. Sci. Adv. 2018, 4, eaat0336.  doi: 10.1126/sciadv.aat0336

    15. [15]

      Weissleder, R. Nat. Biotechnol. 2001, 19, 316.  doi: 10.1038/86684

    16. [16]

      For reviews see: (a) Snook, R. Chem. Soc. Rev. 1997, 26, 319.
      (b) Sau, T. K.; Rogach, A. L.; Jackel, F.; Klar, T. A.; Feldmann, J. Adv. Mater. 2010, 22, 1805.
      (c) Dreaden, E. C.; Mackey, M. A.; Huang, X.; Kang, B.; El-Sayed, M. A. Chem. Soc. Rev. 2011, 40, 3391.
      (d) Ray, P. C.; Khan, S. A.; Singh, A. K.; Senapati, D.; Fan, Z. Chem. Soc. Rev. 2012, 41, 3193.
      (e) Zhang, Z.; Wang, J.; Chen, C. Adv. Mater. 2013, 25, 3869.
      (f) Habault, D.; Zhang, H.; Zhao, Y. Chem. Soc. Rev. 2014, 42, 7244.
      (g) Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Chem. Soc. Rev. 2014, 43, 6254.
      (h) Ng, K. K.; Zheng, G. Chem. Rev. 2015, 115, 11012.
      (i) Dumas, A.; Couvreur, P. Chem. Sci. 2015, 6, 2153.
      (j) Lan, G.; Ni, K.; Lin, W. Coord. Chem. Rev. 2019, 379, 65.

    17. [17]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.  doi: 10.1107/S0021889808042726

    18. [18]

      Sheldrick, G. M. Acta Crystallogr., Sect. A 2015, 71, 3.  doi: 10.1107/S2053273314026370

    19. [19]

      (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
      (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
      (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    20. [20]

      Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.  doi: 10.1063/1.448975

    21. [21]

      Huzinaga, S.; Andzelm, J.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H.; Klobukowski, M. Gaussian Basis Sets for Molecular Calculations, Elsevier Science, Amsterdam, 1984.

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D. 01, Gaussian, Inc., Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    2. [2]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    3. [3]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    4. [4]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    5. [5]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    6. [6]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    7. [7]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    8. [8]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    9. [9]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    10. [10]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    11. [11]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    12. [12]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    13. [13]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    14. [14]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    15. [15]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    16. [16]

      Li LiJiale WenXiaojun ZhangShuwen FuZixuan ChenKai HuangLuyue FangTinghe ZhaoPeipei ZhangXingshu Li . A near-infrared naphthalocyanine photosensitizer with superior light absorption and renal clearance for type-Ⅰ photodynamic and photothermal combination therapy. Chinese Chemical Letters, 2025, 36(6): 110290-. doi: 10.1016/j.cclet.2024.110290

    17. [17]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    18. [18]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    19. [19]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    20. [20]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

Metrics
  • PDF Downloads(6)
  • Abstract views(1211)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return