Citation: Chen Sihong, Pang Chuming, Chen Xiaoyun, Yan Zhihao, Huang Shimin, Li Xiangdi, Zhong Yating, Wang Zhaoyang. Research Progress in Design, Synthesis and Application of Multifunctional Fluorescent Probes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1846-1857. doi: 10.6023/cjoc201901033 shu

Research Progress in Design, Synthesis and Application of Multifunctional Fluorescent Probes

  • Corresponding author: Chen Xiaoyun, xiaoyun_chen12@163.com Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 22 January 2019
    Revised Date: 8 March 2019
    Available Online: 9 July 2019

    Fund Project: the Natural Science Foundation of Guangdong Province 2014A030313429the Undergraduates Innovation Project of South China Normal University 20191434the Guangzhou Science and Technology Project Scientific Special 201607010251the National Natural Science Foundation of China 21602085Project supported by the Natural Science Foundation of Guangdong Province (No. 2014A030313429), the Guangzhou Science and Technology Project Scientific Special (No. 201607010251), the Natural Science Foundation of Jiangsu Province (No. BK20160551), the National Natural Science Foundation of China (No. 21602085), the Guangdong Provincial Science and Technology Project (No. 2017A010103016), and the Undergraduates Innovation Project of South China Normal University (No. 20191434)the Guangdong Provincial Science and Technology Project 2017A010103016the Natural Science Foundation of Jiangsu Province BK20160551

Figures(9)

  • The multifunctional fluorescent probes can detect a plurality of anions and cations or other small molecules. These probes can greatly improve the detection efficiency and reduce the analysis cost with respect to the mono-analyte fluorescent probes. Thus, they have attracted much attention in recent years. According to their molecular structural characteristics, the reported multifunctional fluorescent probes are divided into three types as organic small molecules, polymers and metal-organic complexes. The new progress on their molecular design, synthesis and detecting application is reviewed on the viewpoint of sensing objects and performances. The developing potential of multifunctional fluorescent probes is envisioned also, and the probes capable of simultaneously identifying multiple analytes in the same system should be highlighted in the future
  • 加载中
    1. [1]

      Daly, B.; Ling, J.; de Silva, A. P. Chem. Soc. Rev. 2015, 44, 4023.  doi: 10.1039/C4CS00229F

    2. [2]

      Chen, K.; Shu, Q. H.; Schmittel, M. Chem. Soc. Rev. 2015, 44, 136.  doi: 10.1039/C4CS00263F

    3. [3]

      Magri, D. C.; Brown, G. J.; McClean, G. D.; de Silva, A. P. J. Am. Chem. Soc. 2006, 128, 4950.  doi: 10.1021/ja058295+

    4. [4]

      Ma, H. W.; Li, F.; Li, P.; Wang, H. L.; Zhang, M.; Zhang, G.; Baumgarten, M.; Mullen, K. Adv. Funct. Mater. 2016, 26, 2025.  doi: 10.1002/adfm.201504692

    5. [5]

      Yin, C.-X.; Xiong, K.-M.; Huo, F.-J.; Salamanca, J. C.; Strongin, R. M. Angew. Chem., Int. Ed. 2017, 56, 13188.  doi: 10.1002/anie.201704084

    6. [6]

      Yin, G. X.; Niu, T. T.; Gan, Y. B.; Yu, T.; Yin, P.; Chen, H. M.; Zhang, Y. Y.; Li, H. T.; Yao, S. Z. Angew. Chem., Int. Ed. 2018, 57, 4991.  doi: 10.1002/anie.201800485

    7. [7]

      Wu, Y.-C.; You, J.-Y.; Guan, L.-T.; Shi, J.; Cao, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2015, 35, 2465(in Chinese).
       

    8. [8]

      Jiang, K.; Cao, L.; Hao, Z.-F.; Chen, M.-Y.; Cheng, J.-L.; Li, X.; Xiao, P.; Chen, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2017, 37, 2221(in Chinese).
       

    9. [9]

      Jun, J. V.; Petersson, E. J.; Chenoweth, D. M. J. Am. Chem. Soc. 2018, 140, 9486.  doi: 10.1021/jacs.8b03738

    10. [10]

      Li, Z.; Fang, M.; LaGasse, M. K.; Askim, J. R.; Suslick, K. S. Angew. Chem., Int. Ed. 2017, 56, 9860.  doi: 10.1002/anie.201705264

    11. [11]

      Shan, Z.; Lu, M, S.; Wang, L.; MacDonald, B.; MacInnis, J.; Mkandawire, M.; Zhang, X.; Oakes, K. D. Chem. Commun. 2016, 52, 2087.  doi: 10.1039/C5CC07446K

    12. [12]

      Wu, Y.-C.; Jiang, K.; Luo, S.-H.; Cao, L.; Wu, H.-Q.; Wang, Z.-Y. Spectrochim. Acta, Part A 2018, 206, 632.

    13. [13]

      Jiang, K.; Wu, Y.-C.; Wu, H.-Q.; Li, S.-L.; Luo, S.-H.; Wang, Z.-Y. J. Photochem. Photobiol., A 2018, 350, 52.  doi: 10.1016/j.jphotochem.2017.09.065

    14. [14]

      Li, M.; Lu, H.-Y.; Liu, R.-L.; Chen, J.-D.; Chen, C.-F. J. Org. Chem. 2012, 77, 3670.  doi: 10.1021/jo3002744

    15. [15]

      Zhang, Y.-Y.; Chen, X.-Z.; Liu, X.-Y.; Wang, M.; Liu, J.-J.; Gao, G.; Zhang, X.-Y.; Sun, R.-Z.; Hou, S.-C.; Wang, H.-M. Sens. Actuators, B 2018, 273, 1077.  doi: 10.1016/j.snb.2018.07.012

    16. [16]

      Diana, R.; Caruso, U.; Concilio, S.; Piotto, S.; Tuzi, A.; Panunzi, B. Dyes Pigm. 2018, 155, 249.  doi: 10.1016/j.dyepig.2018.03.055

    17. [17]

      Wang, Y.; Mao, P.-D.; Wu, W.-N.; Mao, X.-J.; Fan, Y.-C.; Zhao, X.-L.; Xu, Z.-Q.; Xu, Z.-H. Sens. Actuators, B 2018, 255, 3085.  doi: 10.1016/j.snb.2017.09.133

    18. [18]

      Jung, J. M.; Lee, S. Y.; Kim, C. Sens. Actuators, B 2017, 251, 291.  doi: 10.1016/j.snb.2017.05.055

    19. [19]

      Hwang, S. M.; Kim, C. Inorg. Chim. Acta 2018, 482, 375.  doi: 10.1016/j.ica.2018.06.039

    20. [20]

      Hariharan, P. S.; Anthony, S. P. Spectrochim. Acta, Part A 2015, 136, 1658.  doi: 10.1016/j.saa.2014.10.061

    21. [21]

      Choi, Y. W.; Park, G. J.; Na, Y. J.; Jo, H. Y.; Lee, S. A.; You, G. R.; Kim, C. Sens. Actuators, B 2014, 194, 343.  doi: 10.1016/j.snb.2013.12.114

    22. [22]

      Hariharan, P. S.; Anthony, S. P. Anal. Chim. Acta 2014, 848, 74.  doi: 10.1016/j.aca.2014.07.042

    23. [23]

      Li, Y. R.; Wu, J.; Jin, X. J.; Wang, J. W.; Han, S.; Wu, W. Y.; Xu, J.; Liu, W. S.; Yao, X. J.; Tang, Y. Dalton Trans. 2014, 43, 1881.  doi: 10.1039/C3DT52618F

    24. [24]

      Song, E. J.; Park, G. J.; Lee, J. J.; Lee, S.; Noh, I.; Kim, Y.; Kim, S. J.; Kim, C.; Harrison, R. G. Sens. Actuators, B 2015, 213, 268.  doi: 10.1016/j.snb.2015.02.094

    25. [25]

      Kundu, A.; Hariharan, P. S.; Prabakaran, K.; Anthony, S. P. Spectrochim. Acta, Part A 2015, 151, 426.  doi: 10.1016/j.saa.2015.06.107

    26. [26]

      Pannipara, M.; Al-Sehemi, A. G.; Irfan, A.; Assiri, M.; Kalam, A.; Al-Ammari, Y. S. Spectrochim. Acta, Part A 2018, 201, 54.  doi: 10.1016/j.saa.2018.04.052

    27. [27]

      Behera, N.; Manivannan, V. J. Photochem. Photobiol., A 2018, 353, 77.  doi: 10.1016/j.jphotochem.2017.10.055

    28. [28]

      Liao, Z.; Liu, Y.; Han, S.-F.; Wang, D.; Zheng, J.-Q.; Zheng, X.-J.; Jin, L.-P. Sens. Actuators, B 2017, 244, 914.  doi: 10.1016/j.snb.2017.01.074

    29. [29]

      Jang, H. J.; Kang, J. H.; Yun, D.; Kim, C. J. Fluoresc. 2018, 28, 785.  doi: 10.1007/s10895-018-2240-5

    30. [30]

      Tang, X.; Han, J.; Wang, Y.; Ni, L.; Bao, X.; Wang, L.; Zhang, W. L. Spectrochim. Acta, Part A 2017, 173, 721.  doi: 10.1016/j.saa.2016.10.028

    31. [31]

      Chang, L.-L.; Gao, Q.; Liu, -S.; Hu, C.-C.; Zhou, W.-J.; Zheng, M.-M. Dyes Pigm. 2018, 153, 117.  doi: 10.1016/j.dyepig.2018.02.013

    32. [32]

      Su, W.; Yuan, S. Z.; Wang, E. J. J. Fluoresc. 2017, 27, 1871.  doi: 10.1007/s10895-017-2124-0

    33. [33]

      Roy, C. B.; Meshram, J. S. J. Lumin. 2016, 171, 208.  doi: 10.1016/j.jlumin.2015.10.059

    34. [34]

      Singh, A.; Singh, R.; Shellaiah, M.; Prakash, E. C.; Chang, H. C.; Raghunath, P.; Lin, M. C.; Lin, H. C. Sens. Actuators, B 2015, 207, 338.  doi: 10.1016/j.snb.2014.09.105

    35. [35]

      Gundogdu, L.; Kose, M.; Takeuchi, S.; Yokoyama, Y.; Orhan, E. J. Lumin. 2018, 203, 568.  doi: 10.1016/j.jlumin.2018.06.014

    36. [36]

      Guo, S. L.; Liu, G.; Fan, C. B.; Pu, S. Z. Sens. Actuators, B 2018, 266, 603.  doi: 10.1016/j.snb.2018.03.168

    37. [37]

      Chen, S.; Wang, W. J.; Yan, M. M.; Tu, Q.; Chen, S. W.; Li, T. B.; Yuan, M. S.; Wang, J. Y. Sens. Actuators, B 2018, 255, 2086.  doi: 10.1016/j.snb.2017.09.008

    38. [38]

      Wang, L. L.; Qu, Y.; Yang, Y. X.; Cao, J.; Wang, L. Sens. Actuators, B 2018, 269, 78.

    39. [39]

      Zhang, S. S.; Wu, X. X.; Niu, Q. F.; Guo, Z. R.; Li, T. D.; Liu, H. X. J. Fluoresc. 2017, 27, 729.  doi: 10.1007/s10895-016-2005-y

    40. [40]

      Puthiyedath, T.; Bahulayan, D. Sens. Actuators, B 2018, 272, 110.  doi: 10.1016/j.snb.2018.05.126

    41. [41]

      Sie, Y.-W.; Wan, C.-F.; Wu, A.-T. RSC Adv. 2017, 7, 2460.  doi: 10.1039/C6RA24704K

    42. [42]

      Sandhu, S.; Kumar, R.; Tripathi, N.; Singh, H.; Singh, P.; Kumar, S. Sens. Actuators, B 2017, 241, 8.  doi: 10.1016/j.snb.2016.10.041

    43. [43]

      Magri, D. C.; Fava, M. C.; Mallia, C. J. Chem. Commun. 2014, 50, 1009.  doi: 10.1039/C3CC48075E

    44. [44]

      Liang, C. S.; Jiang, S. M. Spectrochim. Acta, Part A 2017, 183, 267.  doi: 10.1016/j.saa.2017.04.026

    45. [45]

      Li, S. Z.; Huang, D. Y.; Wan, J. Y.; Yan, S. C.; Jiang, J. L.; Xiao, H. B. Sens. Actuators, B 2018, 275, 101.  doi: 10.1016/j.snb.2018.08.035

    46. [46]

      Jung, J. M.; Kang, J. H.; Han, J.; Lee, H.; Lim, M. H.; Kim, K. T.; Kim, C. Sens. Actuators, B 2018, 267, 58.  doi: 10.1016/j.snb.2018.03.063

    47. [47]

      Pandith, A.; Bhattarai, K. R.; Kumara, R.; Siddappa, G.; Chae, H.-J.; Seo, Y. J. Sens. Actuators, B 2019, 282, 730.  doi: 10.1016/j.snb.2018.11.111

    48. [48]

      Feng, X. J.; Fu, Y. L.; Jin, J.; Wu, J. X. Anal. Biochem. 2018, 563, 20.  doi: 10.1016/j.ab.2018.09.018

    49. [49]

      Xu, J. B.; Liu, N.; Hao, C. W.; Han, Q. Q.; Duan, Y. L.; Wu, J. Sens. Actuators, B 2019, 280, 129.  doi: 10.1016/j.snb.2018.10.038

    50. [50]

      Padhan, S. K.; Palei, J.; Rana, P.; Murmu, N.; Sahu, S. N. Spectrochim. Acta, Part A 2019, 208, 271.  doi: 10.1016/j.saa.2018.10.016

    51. [51]

      Tripathi, K.; Singh, A. K.; Sonkar, A. K.; Prakash, A.; Roy, J. K.; Mishra, L.; Sens. Actuators, B 2018, 275, 116.  doi: 10.1016/j.snb.2018.08.026

    52. [52]

      Wu, W.-N.; Wu, H.; Wang, Y.; Mao, X.-J.; Liu, B.-Z.; Zhao, X.-L.; Xu, Z.-Q.; Fan, Y.-C.; Xu, Z.-H. RSC Adv. 2018, 8, 5640.  doi: 10.1039/C7RA10219D

    53. [53]

      Wu, Y.-C.; Huo, J.-P.; Cao, L.; Ding, S.; Wang, L.-Y.; Cao, D. R.; Wang, Z.-Y. Sens. Actuators, B 2016, 237, 865.  doi: 10.1016/j.snb.2016.07.028

    54. [54]

      Wu, Y.-C.; You, J.-Y.; Jiang, K.; Xie, J.-C.; Li, S.-L.; Cao, D. R.; Wang, Z.-Y. Dyes Pigm. 2017, 140, 47.  doi: 10.1016/j.dyepig.2017.01.025

    55. [55]

      Singh, P.; Singh, H.; Bhargava, G.; Kumar, S. J. Mater. Chem. C 2015, 3, 5524.  doi: 10.1039/C5TC00554J

    56. [56]

      Joo, D. H.; Mok, J. S.; Bae, G. H.; Oh, S. E.; Kang, J. H.; Kim, C. Ind. Eng. Chem. Res. 2017, 56, 8399.  doi: 10.1021/acs.iecr.7b01115

    57. [57]

      Ding, W.-H.; Wang, D.; Zheng, X.-J.; Ding, W.-J.; Zheng, J.-Q.; Mu, W.-H.; Cao, W.; Jin, L.-P. Sens. Actuators, B 2015, 209, 359.  doi: 10.1016/j.snb.2014.11.144

    58. [58]

      Li, L.; Shen, Y.; Zhao, Y.-H.; Mu, L.; Zeng, X.; Redshaw, C.; Wei, G. Sens. Actuators, B 2016, 226, 279.  doi: 10.1016/j.snb.2015.11.126

    59. [59]

      Zhang, H.; Sun, T.; Ruan, Q.; Zhao, J.-L; Mu, L.; Zeng, X.; Jin, Z. W.; Su, S. B.; Luo, Q. Y.; Yan, Y. Y.; Redshaw, C. Dyes Pigm. 2019, 162, 257.  doi: 10.1016/j.dyepig.2018.10.025

    60. [60]

      Ta, S.; Das, S.; Ghosh, M.; Banerjee, M.; Hira, S. K.; Manna, P. P.; Das, D. Spectrochim. Acta, Part A 2019, 209, 170.  doi: 10.1016/j.saa.2018.10.006

    61. [61]

      Wan, C.-F.; Chang, Y.-J.; Chien, C.-Y.; Sie, Y.-W.; Hu, C.-H.; Wu, A.-T. J. Lumin. 2016, 178, 115.  doi: 10.1016/j.jlumin.2016.05.039

    62. [62]

      Wang, Q. M.; Tan, Y. Z.; Wang, N. H.; Lu, Z. X.; Wang, W. L. Spectrochim. Acta, Part A 2018, 201, 216.  doi: 10.1016/j.saa.2018.05.017

    63. [63]

      Singh, H.; Bhargava, G.; Kumar, S.; Singh, P.; Sens. Actuators, B 2018, 272, 43.  doi: 10.1016/j.snb.2018.05.104

    64. [64]

      Gwon, S. Y.; Rao, B. A.; Kim, H. S.; Son, Y. A.; Kim, S. H. Spectrochim. Acta, Part A 2015, 144, 226.  doi: 10.1016/j.saa.2015.02.094

    65. [65]

      Cao, L.; Xiong, J.-F.; Wu, Y.-C.; Ding, S.; Li, M.-B.; Xie, F.; Ma, Z.-H.; Wang, Z.-Y. Chin. J. Org. Chem. 2016, 36, 2053(in Chinese).
       

    66. [66]

      Su, P. R.; Zhu, Z. W.; Wang, J.; Cheng, B.; Wu, W. Y.; Iqbal, K.; Tang, Y. Sens. Actuators, B 2018, 273, 93.  doi: 10.1016/j.snb.2018.06.037

    67. [67]

      Kumar, A.; Chae, P. S. Sens. Actuators, B 2019, 281, 933.  doi: 10.1016/j.snb.2018.11.023

    68. [68]

      Okorochenkova, Y.; Porubsky, M.; Benicka, S.; Hlavac, J. Chem. Commun. 2018, 54, 7589.  doi: 10.1039/C8CC01731J

    69. [69]

      Okda, H. E.; Sayed, S. E.; Otri, I.; Ferreora, R. C. M.; Costa, S. P. G.; Raposo, M. M. M.; Martínez-Má ez, R.; Sancenón, F. Dyes Pigm. 2019, 162, 303.  doi: 10.1016/j.dyepig.2018.10.017

    70. [70]

      Wu, Y.-C.; Luo, S.-H.; Cao, L.; Jiang, K.; Wang, L.-Y.; Xie, J.-C.; Wang, Z.-Y. Anal. Chim. Acta 2017, 976, 74.  doi: 10.1016/j.aca.2017.04.022

    71. [71]

      Jiang, K.; Luo, S.-H.; Pang, C.-M.; Wang, B.-W.; Wu, H.-Q.; Wang, Z.-Y. Dyes Pigm. 2019, 162, 367.  doi: 10.1016/j.dyepig.2018.10.041

    72. [72]

      Chahal, M. K.; Sankar, M. Dalton Trans. 2017, 46, 11669.  doi: 10.1039/C7DT01158J

    73. [73]

      Zhang, X. Y.; Chen, S. S.; Jin, S. H.; Zhang, Y.; Chen, X.; Zhang, Z.; Shu, Q. H. Sens. Actuators, B 2017, 242, 994.  doi: 10.1016/j.snb.2016.09.154

    74. [74]

      Kumar, V.; Raviraju, G.; Rana, H.; Rao, V. K.; Gupta, A. K. Chem. Commun. 2017, 53, 12954.  doi: 10.1039/C7CC07823D

    75. [75]

      Li, H. Q.; Sun, X. Q.; Zheng, T.; Xu, Z. X.; Song, Y. X.; Gu, X. H. Sens. Actuators, B 2019, 279, 400.  doi: 10.1016/j.snb.2018.10.017

    76. [76]

      Xie, X. X.; Yin, C. X.; Yue, Y. K.; Chao, J. B.; Huo, F. J. Sens. Actuators, B 2018, 277, 647.  doi: 10.1016/j.snb.2018.09.064

    77. [77]

      Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    78. [78]

      Geng, T.-M.; Wu, D.-Y.; Huang, W.; Huang, R.-Y.; Wu, G.-H. J Polym Res 2014, 21, 354.  doi: 10.1007/s10965-013-0354-7

    79. [79]

      Chen, H.; Dai, W.; Huang, J. X.; Chen, S. J.; Yan, X. H. J. Mater. Sci. 2018, 53, 15717.  doi: 10.1007/s10853-018-2716-3

    80. [80]

      Guo, Z. Q.; Zhu, W. H.; Tian, H. Macromol. 2010, 43, 739.  doi: 10.1021/ma902466g

    81. [81]

      Geng, T.-M.; Wu, D.-Y.; Huang, W. J. Polym. Res. 2015, 22, 40.  doi: 10.1007/s10965-015-0684-8

    82. [82]

      Geng, T.-M.; Wang, X.; Jiang, H.; Song, W.; Ni, R. F.; Chen, J.; Wang, Y. J. Fluoresc. 2016, 26, 977.  doi: 10.1007/s10895-016-1785-4

    83. [83]

      Hu, J. M.; Dai, L.; Liu, S. Y. Macromol. 2011, 44, 4699.  doi: 10.1021/ma2001146

    84. [84]

      Guo, C. X.; Li, P.; Pei, M. S.; Zhang, G. Y. Sens. Actuators, B 2015, 221, 1223.  doi: 10.1016/j.snb.2015.07.105

    85. [85]

      Wang, L. Y.; Fang, G. P.; Cao, D. R. Sens. Actuators, B 2015, 221, 63.  doi: 10.1016/j.snb.2015.06.050

    86. [86]

      Wang, T. S.; Zhang, N.; Li, Q. B.; Li, Z. L.; Bao, Y. Y.; Bai, R. K. Sens. Actuators, B 2016, 225, 81.  doi: 10.1016/j.snb.2015.11.014

    87. [87]

      Bao, Y. Y.; Wang, T. S.; Li, Q. B.; Du, F. F.; Bai, R. K.; Smet, M.; Dehaen, W. Polym. Chem. 2014, 5, 792.  doi: 10.1039/C3PY01014G

    88. [88]

      Ju, P. Y.; Su, Q.; Liu, Z. Q.; Li, X. D.; Guo, B. X.; Liu, W. T.; Li, G. H.; Wu, Q. L. J. Mater. Sci. 2019, 54, 851.  doi: 10.1007/s10853-018-2821-3

    89. [89]

      Qu, J.-B.; Li, S.-H.; Xu, Y.-L.; Liu, Y.; Liu, J.-G. Sens. Actuators, B 2018, 272, 124.

    90. [90]

      Kumar, V. V.; Thenmozhi, M. K.; Ganesan, A.; Ganesan, S. S.; Anthony, S. P. RSC Adv. 2015, 5, 88125.  doi: 10.1039/C5RA13797G

    91. [91]

      Ding, P.; Xin, X.; Zhao, L. L.; Xie, Z. C.; Zhang, Q. H.; Jiao, J. M.; Xu, G. Y. RSC Adv. 2017, 7, 3051.  doi: 10.1039/C6RA25583C

    92. [92]

      Wu, Z.-F.; Gong, L.-K.; Huang, X.-Y. Inorg. Chem. 2017, 56, 7397.  doi: 10.1021/acs.inorgchem.7b00505

    93. [93]

      Hu, J.-S.; Dong, S.-J.; Wu, K.; Zhang, X.-L.; Jiang, J.; Yuan, J.; Zheng, M.-D. Sens. Actuators, B 2018, 283, 255.

    94. [94]

      Chen, K.; Schmittel, M. Analyst 2013, 138, 6742.  doi: 10.1039/c3an01530k

    95. [95]

      Liu, Y.; Ma, J. J.; Xu, C.; Yang, Y.; Xia, M. F.; Jiang, H.; Liu, W. S. Dalton Trans. 2018, 47, 13543.  doi: 10.1039/C8DT02202J

    96. [96]

      Yang, Y.; Qiu, F. Z.; Xu, C.; Feng, Y.; Zhang, G. L.; Liu, W. S. Dalton Trans. 2018, 47, 7480.  doi: 10.1039/C8DT01518J

    97. [97]

      Yang, C. L.; Xu, J.; Ma, J. Y.; Zhu, D. Y.; Zhang, Y. F.; Liang, L. Y.; Lü, M. G. Polym. Chem. 2012, 3, 2640.  doi: 10.1039/c2py20408h

    98. [98]

      Yang, Y.; Song, X. R.; Xu, C.; Wang, Y. Z.; Zhang, G. L.; Liu, W. S. Dalton Trans. 2018, 47, 11077.  doi: 10.1039/C8DT02430H

    99. [99]

      Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    100. [100]

      Wu, Z.-F.; Huang, X.-Y. Dalton Trans. 2017, 46, 12597.  doi: 10.1039/C7DT02800H

    101. [101]

      Dalapati, R.; Biswas, S. Sens. Actuators, B 2017, 239, 759.  doi: 10.1016/j.snb.2016.08.045

    102. [102]

      Li, H. H.; Han, Y. B.; Shao, Z. C.; Li, N.; Huang, C.; Hou, H. W. Dalton Trans. 2017, 46, 12201.  doi: 10.1039/C7DT02590D

    103. [103]

      Li, J.-M.; Li, R.; Li, X. CrystEngComm 2018, 20, 4962.  doi: 10.1039/C8CE00915E

    104. [104]

      Shi, M.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Dyes Pigm. 2016, 129, 109.  doi: 10.1016/j.dyepig.2016.02.022

    105. [105]

      Chen, S. G.; Shi, Z. Z.; Qin, L.; Jia, H. L.; Zheng, H. G. Cryst. Growth Des. 2017, 17, 67.  doi: 10.1021/acs.cgd.6b01197

    106. [106]

      Gong, W.-J.; Yao, R.; Li, H.-X.; Ren, Z.-G.; Zhang, J.-G.; Lang, J.-P. Dalton Trans. 2017, 46, 16861.  doi: 10.1039/C7DT03876C

    107. [107]

      Natarajan, S.; Jana, A. K. ChemPlusChem 2017, 82, 1153.  doi: 10.1002/cplu.201700277

    108. [108]

      Wang, X. R.; Huang, Z.; Du, J.; Wang, X. Z.; Gu, N.; Tian, X.; Li, Y.; Liu, Y. Y.; Huo, J. Z.; Ding, B. Inorg. Chem. 2018, 57, 12885.  doi: 10.1021/acs.inorgchem.8b02123

    109. [109]

      Wang, X. R.; Du, J.; Huang, Z.; Liu, K.; Liu, Y. Y.; Huo, J. Z.; Liu, Z. Y.; Dong, X. Y.; Chen, L. L.; Ding, B. J. Mater. Chem. B 2018, 6, 4569.  doi: 10.1039/C8TB01032C

    110. [110]

      Li, B.; Chen, X.; Hu, P.; Kirchon, A.; Zhao, Y.-M.; Pang, J. D.; Zhang, T. L.; Zhou, H.-C. ACS Appl. Mater. Interfaces 2019, 11, 8227.  doi: 10.1021/acsami.8b19815

    111. [111]

      Dong, B.-X.; Pan, Y.-M.; Liu, W.-L.; Teng, Y.-L. Cryst. Growth Des. 2018, 18, 431.  doi: 10.1021/acs.cgd.7b01430

    112. [112]

      Erdemir, S.; Kocyigi, T. O. Sens. Actuators, B 2018, 273, 56.  doi: 10.1016/j.snb.2018.06.019

    113. [113]

      Moghadam, F. N.; Amirnasr, M.; Meghdadi, S.; Eskandari, K.; Buchholz, A.; Plass, W. Spectrochim. Acta, Part A 2019, 207, 6.  doi: 10.1016/j.saa.2018.08.058

    114. [114]

      Ekbote, A.; Mobin, S. M.; Misra, R. J. Mater. Chem. C 2018, 6, 10888.  doi: 10.1039/C8TC04310H

    115. [115]

      Kundu, B. K.; Mandal, P.; Mukhopadhyay, B. G.; Tiwari, R.; Nayak, D.; Ganguly, R. Sens. Actuators, B 2019, 282, 347.  doi: 10.1016/j.snb.2018.11.076

    116. [116]

      Chen, L.; Oh, H.; Wu, D.; Kim, M. H.; Yoon, J. Chem. Commun. 2018, 34, 2276.

    117. [117]

      TG, A. K.; Tekuria, V.; Mohan, M.; Trivedi, D. R. Sens. Actuators, B 2019, 284, 271.  doi: 10.1016/j.snb.2018.12.003

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    8. [8]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    18. [18]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    19. [19]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(57)
  • Abstract views(3696)
  • HTML views(955)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return