Citation: Ruan Liheng, Liu Chang, Sun Jing, Zhou Mingdong. Recent Advances on the Synthesis of β-Ketophosphine Oxides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2403-2411. doi: 10.6023/cjoc201901027 shu

Recent Advances on the Synthesis of β-Ketophosphine Oxides

  • Corresponding author: Sun Jing, sunjing@lnpu.edu.cn Zhou Mingdong, mingdong.zhou@lnpu.edu.cn
  • Received Date: 17 January 2019
    Revised Date: 15 April 2019
    Available Online: 19 September 2019

    Fund Project: Project supported by the Doctor Startup Fund of Liaoning Province (No. 20180540085)the Doctor Startup Fund of Liaoning Province 20180540085

Figures(14)

  • β-Ketophosphine oxides are extremely important phosphorus-containing compounds and widely utilitied in the field of organic synthesis chemistry. Developing simple, green and efficient protocol to synthesize β-ketophosphine oxides has attracted great attention of chemists in recent years. The recent advances on the synthesis of β-ketophosphine oxides via phosphorus-centered radical addition reaction or hydration reaction are summarized.
  • 加载中
    1. [1]

      (a) Perumal, S. K.; Adediran, S. A.; Pratt, R. F. Bioorg. Med. Chem. 2008, 16, 6987.
      (b) Li, R.; Chen, X.; Wei, S.; Sun, K.; Fan, L.-L.; Liu, Y.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Adv. Synth. Catal. 2018, 360, 4807.
      (c) Muhammad, M.-H.; Chen, X.-L.; Yu, B.; Qu, L.-B.; Zhao, Y.-F. Pure Appl. Chem. 2019, 91, 33.
      (d) Jing, C.-F.; Chen, X.-L.; Sun, K.; Yang, Y.-K.; Chen, T.; Liu, Y.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Org. Lett. 2019, 21, 486.
      (e) Liu, Y.-L.; Liang, Y.; Pi, S.-F.; Li, J.-H. J. Org. Chem. 2009, 74, 5691.
      (f) Kondoh, A.; Yorimitsu, H.; Oshima, K. Chem.-Asian J. 2010, 5, 398.
      (g) Perumal, S.-K.; Adediran, S.-A.; Pratt, R.-F. Bioorg. Med. Chem. 2008, 16, 6987.

    2. [2]

      (a) Yan, B.; Spilling, C.-D. J. Org. Chem. 2008, 73, 5385.
      (b) Pronin, S.-V.; Martinez, A.; Kuznedelov, K.; Severinov, K.; Shuman, H.-A.; Kozmin, S.-A. J. Am. Chem. Soc. 2011, 133, 12172.
      (c) Müller, S.; Mayer, T.; Sasse, F.; Maier, M.-E. Org. Lett. 2011, 13, 3940.

    3. [3]

      (a) Ryglowski, A.; Kafarski, P. Tetrahedron 1996, 52, 10685.
      (b) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2931.

    4. [4]

      McCabe, D.-J.; Duesler, E.-N.; Paine, R.-T. Inorg. Chem.1985, 24, 4626.  doi: 10.1021/ic00220a040

    5. [5]

      (a) Perumal, S.-K.; Adediran, S.-A.; Pratt, R.-F. Bioorg. Med. Chem. 2008, 16, 6987.
      (b) Nguyen, L. M.; Diep, V. V.; Phan, H. T.; Niesor E. J.; Masson D.; GuyonGellin, Y.; Buattini, E.; Severi, C.; Azoulay, R.; Bentzen, C. L. WO 2004026242, 2004.
      (c) Erion M. D.; Jiang, H.; Boyer, S. H. US 20060046980, 2006.

    6. [6]

      (a) Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.
      (b) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.

    7. [7]

      (a) Narkunan, K.; Nagarajan, M. J. Org. Chem. 1994, 59, 6386.
      (b) Maloney, K. M.; Chung, J. Y. L. J. Org. Chem. 2009, 74, 7574.
      (c) Robert, R. M.; Ken, M.; Johann, C.; Jason, T.; Robert, L.; Margaret, F. Tetrahedron Lett. 2009, 50, 870.
      (d) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.

    8. [8]

      (a) Leca, D.; Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858.
      (b) Marque, S.; Tordo, P. In New Aspects in Phosphorus Chemistry, 5th ed., Vol. 250, Ed.: Majoral, J. P., Springer, Berlin, Heidelberg, 2005, p. 43.
      (c) Baumgartner, T.; Réau, R. Chem. Rev. 2006, 106, 4681.
      (d) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581.

    9. [9]

      Zhang, P.-B.; Zhang, L.-L.; Gao, Y.-Z.; Xu, J.;Fang, H.;Tang, G.;Zhao Y.-F. Chem. Commun.2015, 51, 7839.  doi: 10.1039/C5CC01904D

    10. [10]

      Feng, S.-B.; Li, J.-L.; He, F.-F.; Li, T.;Li, H.-L.; Wang, X.-L.; Xie, X.-G.; She, X.-G. Org. Chem. Front.2019, 6, 946.  doi: 10.1039/C9QO00006B

    11. [11]

      Gutierrez, V.;Mascaro, E.;Alonso, F.;Moglie, Y.;Radivoy, G. RSC Adv.2015, 5, 65739.  doi: 10.1039/C5RA10223E

    12. [12]

      Zhong, W.-W.; Zhang, Q.;Li, M.-S.; Hu, D.-Y.; Cheng, M.;Du, F.-T.; Ji, J.-X.; Wei, W. Synth. Commun.2016, 46, 1377.  doi: 10.1080/00397911.2016.1205196

    13. [13]

      Chen, X.;Chen, X.;Li, X.;Qu, C.;Qu, L.;Bi, W.;Sun, K.;Zhao, Y.-F. Tetrahedron 2017, 73, 2439.  doi: 10.1016/j.tet.2017.03.026

    14. [14]

      Zeng, Y.-F.; Tan, D.-H.; Lv, W.-X.; Li, Q.-J.; Wang, H.-G. Eur. J. Org. Chem.2015, 4335.

    15. [15]

      Chen, X.;Li, X.;Chen, X.-L.Qu, L.-B.; Chen, J.-Y.; Sun, K.;Liu, Z.-D.; Bi, W.-Z.; Xia, Y.-Y.; Wu, H.-T.; Zhao, Y.-F. Chem. Commun.2015, 51, 3846.  doi: 10.1039/C4CC10312B

    16. [16]

      Mi, X.;Wang, C.;Huang, M.;Zhang, J.;Wu, Y. Org. Lett.2014, 16, 3356.  doi: 10.1021/ol5013839

    17. [17]

      Wang, L.-J.; Wang, A.-Q.; Xia, Y.;Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun.2014, 50, 13998.  doi: 10.1039/C4CC06923D

    18. [18]

      Zhou, Z.-Z.; Zheng, L.;Yan, X.-B.; Jin, D.-P.; He, Y.-T.; Liang, Y.-M. Org. Biomol. Chem.2016, 14, 4507.  doi: 10.1039/C6OB00505E

    19. [19]

      Liu, J.;Zhao, S.;Song, W.;Li, R.;Guo, X.;Zhuo, K.;Yue, Y. Adv. Synth. Catal.2017, 359, 609.  doi: 10.1002/adsc.201600850

    20. [20]

      Zhang, H.;Gu, Z.;Li, Z.;Pan, C.;Li, W.;Hu, H.;Zhu, C. J. Org. Chem.2016, 81, 2122.  doi: 10.1021/acs.joc.5b01879

    21. [21]

      Li, L.-L.; Huang, W.-B.; Chen, L.-J.; Dong, J.-X.; Ma, X.-B.; Peng, Y.-G. Angew. Chem., Int. Ed.2017, 56, 10539.  doi: 10.1002/anie.201704910

    22. [22]

      Yuan, J.-W.; Li, Y.-Z.; Mai, W.-P.; Yang, L.-R.; Qu, L.-B. Tetrahedron 2016, 72, 3084.  doi: 10.1016/j.tet.2016.04.034

    23. [23]

      Wei, W.;Ji, J.-X. Angew. Chem., Int. Ed.2011, 50, 9097.  doi: 10.1002/anie.201100219

    24. [24]

      Yang, X.-Y.; Du, F.-T.; Wei, W.;Ji, J.-X.; Chen, Q. Chin. J. Appl. Eviron. Biol.2015, 21, 263.

    25. [25]

      Yi, N.-N.; Wang, R.-J.; Zou, H.-X.; He, W.-B.; Fu, W.-Q.; He, W.-M. J. Org. Chem.2015, 80, 5023.  doi: 10.1021/acs.joc.5b00408

    26. [26]

      Zhou, M.-X.; Zhou, Y.;Song, Q.-L. Chem.-Eur. J.2015, 21, 10654.  doi: 10.1002/chem.201501226

    27. [27]

      Zhou, M.-X.; Chen, M.;Zhou, Y.;Yang, K.;Su, J.-H.; Du, J.-F.; Song, Q.-L. Org. Lett.2015, 17, 1786.  doi: 10.1021/acs.orglett.5b00574

    28. [28]

      Zhou, Y.;Zhou, M.-X.; Chen, M.;Su, J.-H.; Du, J.-F.; Song, Q.-L. RSC Adv.2015, 5, 103977.  doi: 10.1039/C5RA23950H

    29. [29]

      Zhou, Y.;Rao, C.-Q.; Mai, S.-Y.; Song, Q.-L. J. Org. Chem.2016, 81, 2027.  doi: 10.1021/acs.joc.5b02887

    30. [30]

      Gu, J.;Cai, C. Org. Biomol. Chem.2017, 15, 4226.  doi: 10.1039/C7OB00505A

    31. [31]

      Ke, J.;Tang, Y.-L.; Yi, H.;Li, Y.-L.; Cheng, Y.-D.; Liu, C.;Lei, A.-W. Angew. Chem., Int. Ed.2015, 54, 6604.  doi: 10.1002/anie.201501287

    32. [32]

      Liang, W.;Zhang, Z.-J.; Yi, D.;Fu, Q.;Chen, S.-Y.; Yang, L.;Du, F.-T.; Ji, J.-X.; Wei, W. Chin. J. Chem.2017, 35, 1378.  doi: 10.1002/cjoc.201700189

    33. [33]

      Zhang, Z.-J.; Yi, D.;Fu, Q.;Liang, W.;Chen, S.-Y.; Yang, L.;Du, F.-T.; Ji, J.-X.; Wei, W. Tetrahedron Lett.2017, 58, 2417.  doi: 10.1016/j.tetlet.2017.05.005

    34. [34]

      Fu, Q.;Yi, D.;Zhang, Z.-J.; Liang, W.;Chen, S.-Y.Yang, L.;Zhang, Q.;Ji, J.-X.; Wei, W. Org. Chem. Front.2017, 4, 1385.  doi: 10.1039/C7QO00202E

    35. [35]

      Tang, L.;Wen, L.-X.; Sun, T.;Zhang, D.;Yang, Z.;Feng, C.-T.; Wang, Z.-Y. Asian J. Org. Chem.2017, 6, 1683.  doi: 10.1002/ajoc.201700434

    36. [36]

      Mondal, M.;Bora, U. RSC Adv.2013, 3, 18716.  doi: 10.1039/c3ra42480d

    37. [37]

      Pan, X.Q.; Zou, J.P.; Zhang, G.L.; Zhang, W. Chem. Commun.2010, 46, 1721.  doi: 10.1039/b925951a

    38. [38]

      Zhou, J.;Zhang, G.-L.; Zou, J.-P.; Zhang, W. Eur. J. Org. Chem.2011, 3412.

    39. [39]

      Zhou, P.;Jiang, Y.-J.; Zou, J.-P.; Zhang, W. Synthesis 2012, 44, 1043.  doi: 10.1055/s-0031-1289748

    40. [40]

      Zhang, G.-Y.; Li, C.-K.; Li, D.-P.; Zeng, R.-S.; Shoberu, A.;Zou, J.-P. Tetrahedron 2016, 72, 2972.  doi: 10.1016/j.tet.2016.04.013

    41. [41]

      Zhou, P.;Hu, B.;Li, L.-D.; Rao, K.-R.; Yang, J.;Yu, F.-C. J. Org. Chem.2017, 82, 13268.  doi: 10.1021/acs.joc.7b02391

    42. [42]

      Tang, P.;Zhang, C.;Chen, E.;Chen, B.;Chen, W.;Yu, Y. Tetrahedron Lett.2017, 58, 2157.  doi: 10.1016/j.tetlet.2017.04.069

    43. [43]

      Bu, M.-J.; Lu, G.-P.; Cai, C. Catal. Sci. Technol.2016, 6, 413.  doi: 10.1039/C5CY01541C

    44. [44]

      Liu, D.;Chen, J.-Q.; Wang, X.-Z.; Xu, P.-F. Adv. Synth. Catal.2017, 359, 2773.  doi: 10.1002/adsc.201700293

    45. [45]

      Qian, H.-F.; Li, C.-K.; Zhou, Z.-H.; Tao, Z.-K.; Shoberu, A.;Zou, J.-P. Org. Lett.2018, 20, 5947.  doi: 10.1021/acs.orglett.8b02639

    46. [46]

      Shi, Y.;Chen, R.-S.; Guo, K.;Meng, F.;Cao, S.-J.; Gu, C.;Zhu, Y.-G. Tetrahedron Lett.2018, 59, 2062.  doi: 10.1016/j.tetlet.2018.04.040

    47. [47]

      Peng, P.;Lu, Q.-Q.; Peng, L.;Liu, C.;Wang, G.-Y.; Lei, A.-W. Chem. Commun.2016, 52, 12338.  doi: 10.1039/C6CC06881B

    48. [48]

      (a) Beller, M.;Seayad, J.;Tillack, A.;Jiao, H. Angew. Chem., Int. Ed.2004, 43, 3368.
      (b) Zeng, X. Chem. Rev.2013, 113, 6864.

    49. [49]

      Sturtz, C.C.G.; Normant, H. Bull. Soc. Chim. Fr.1966, 1707.

    50. [50]

      Li, X.-B.; Hu, G.-B.; Luo, P.;Tang, G.;Gao, Y.-X.; Xu, P.-X.; Zhao, Y.-F. Adv.Synth.Catal.2012, 354, 2427.  doi: 10.1002/adsc.201200420

    51. [51]

      Xie, L.-Y.; Yuan, R.;Wang, R.-J.; Peng, Z.-H.; Xiang, J.-N.; He, W.-M. Eur. J. Org. Chem.2014, 13, 2668.  doi: 10.1002/chin.201522233

    52. [52]

      Xiang, J.-N.; Yi, N.-N.; Wang, R.-J.; Lu, L.-H.; Zou, H.-X.; Pan, Y.;He, W.-M. Tetrahedron 2015, 71, 694.  doi: 10.1016/j.tet.2014.12.001

    53. [53]

      Liu, K.-J.; Liu, H.-M.; Wang, W.-G.; Ou, L.-J.; Wang, J.-J.Hu, B.-N. Chin. J. Org. Chem.2014, 34, 2007(in Chinese).
       

    54. [54]

      Hou, J.-L.; Chen, Y.;Ma, D.-M.; Cordes, B.;Wang, J.-Y.; Wang, X.;Kühn, F.-E.; Guo, H.;Zhou, M.-D. Chem. Commun.2015, 51, 7439.  doi: 10.1039/C5CC01160D

    55. [55]

      Zhu, Y.-G. Ph. D. Dissertation, Hunan University, Changsha, 2016(in Chinese).

    56. [56]

      Ruan, L.-H.; Wang, Q.;Sun, J.;Zhou, M.-D. Asian J. Org. Chem.2018, 7, 1839.  doi: 10.1002/ajoc.201800348

    57. [57]

      Chen, L.-L.; Zhang, J.-W.; Yang, W.-W.; Chen, P.;Chen, D.-Y.; Wang, Y.-B. Org. Biomol. Chem.2019, 17, 3003.  doi: 10.1039/C9OB00251K

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    12. [12]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(12)
  • Abstract views(1130)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return