Citation: Yan Shiqiang, Dong Daoqing, Xie Chunwen, Wang Wensheng, Wang Zuli. Synthesis of Bicyclic ortho-Aminocarbonitrile Derivatives Catalyzed by 1, 4-Diazabicyclo[2.2.2]octane[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2560-2566. doi: 10.6023/cjoc201901023 shu

Synthesis of Bicyclic ortho-Aminocarbonitrile Derivatives Catalyzed by 1, 4-Diazabicyclo[2.2.2]octane

  • Corresponding author: Wang Zuli, wangzulichem@163.com
  • Received Date: 17 January 2019
    Revised Date: 20 April 2019
    Available Online: 26 September 2019

    Fund Project: the Special Projects for Independent Innovation and Achievement Transformation of Shandong Province 2015ZDXX0302A02Project supported by the National Natural Science Foundation of China (Nos. 81573340, 21402103, 21772107), the Special Projects for Independent Innovation and Achievement Transformation of Shandong Province (No. 2015ZDXX0302A02) and the Research Fund of Qingdao Agricultural University Highlevel Person (No. 631303)the Research Fund of Qingdao Agricultural University Highlevel Person 631303the National Natural Science Foundation of China 21772107the National Natural Science Foundation of China 21402103the National Natural Science Foundation of China 81573340

Figures(3)

  • One-pot three-component reactions catalyzed by 1, 4-diazabicyclo[2.2.2]octane (DABCO) for the synthesis of bicyclic ortho-aminocarbonitrile derivatives (21 examples, 68%~96%) have been developed. The reactions proceeded smoothly at room temperature and generated the corresponding products in short reaction time with high to excellent yields. Importantly, the desired products could be easily collected through simple filtration and washing with ethanol.
  • 加载中
    1. [1]

      (a) Tang, M.; Wu Y.; Liu Y.; Cai M.; Xia F.; Liu S.; Hu W.; Wu, Y. Acta Chim. Sinica 2016, 74, 54 (in Chinese).
      (唐敏, 吴永, 刘源, 蔡茂强, 夏飞, 刘顺英, 胡文浩, 化学学报, 2016, 74, 54.)
      (b) Yu, S.; Fu, X.; Liu, G.; Qiu, H.; Hu, W. Acta Chim. Sinica 2018, 76, 895 (in Chinese).
      (余思凡, 傅祥, 刘耿鑫, 邱晃, 胡文浩, 化学学报, 2018, 76, 895.)
      (c) Lu, L.-H.; Zhou, S.-J.; Sun, M.; Chen, J.-L.; Xia, W.; Yu, X.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 1574.
      (d) Wu, C.; Xiao, H.-J.; Wang, S.-W.; Tang, M.-S.; Tang, Z.-L.; Xia, W.; Li, W.-F.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 2169.
      (e) Wu, C.; Hong, L.; Shu, H.; Zhou, Q.-H.; Wang, Y.; Su, N.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 8798.
      (f) Wang, Z.; Yang, L.; Liu, H.-L.; Bao, W.-H.; Tan, Y.-Z.; Wang, M.; Tang, Z.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 2639 (in Chinese).
      (王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
      (g) Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.
      (h) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
      (i) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189 (in Chinese).
      (王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
      (j) Yue, H.; Bo, P.; Wang, B. L.; Lv, X.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463 (in Chinese).
      (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39, 463.)
      (k) Xie, L.-Y.; Peng, S.; Fan, T.-G.; Liu, Y.-F.; Sun, M.; Jiang, L.-L.; Wang, X.-X.; Cao, Z.; He, W.-M. Sci. China Chem. 2019, 62, 460.
      (l) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808. (m) Zong, Y.; Lang, Y.; Yang, M.; Li, X.; Fan, X.; Wu, J. Org. Lett. 2019, 21, 1935.

    2. [2]

      (a) Tan, J.; Guo, Y.; Zeng, F.; Chen, G.; Xie, L.; He, W. Chin. J. Org. Chem. 2018, 38, 1740 (in Chinese).
      (谭家希, 郭也, 曾飞, 陈观荣, 谢龙勇, 何卫民, 有机化学, 2018, 38, 1740.)
      (b) Sha, H.-K.; Liu, F.; Lu, J.; Liu, Z.-Q.; Hao, W.-J.; Tang, J.-L.; Tu, S.-J.; Jiang, B. Green Chem. 2018, 20, 3476.
      (c) Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493.
      (d) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; Tang, Z.-L.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
      (e) Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.-L.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.
      (g) Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 4916.

    3. [3]

      (a) Enders, D.; Huettl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
      (b) Padwa, A. Chem. Soc. Rev. 2009, 38, 3072.
      (c) Takumi, M.; Noriaki, O.; Takatoshi, I.; Toshiyuki, M. Tetrahedron Lett. 2000, 41, 1051.
      (d) Takumi, M.; Yoshio, I. Tetrahedron 2002, 58, 3155.
      (e) Saddiqa, A.; Bukhari, I. H.; Tahir, M. N.; Ahmad, M.; Shafiq, M.; Arshad, M. N. Asian J. Chem. 2015, 27, 969.

    4. [4]

      (a) Wan, Y.; Zhang, X.; Zhao, L.; Wang, C.; Chen, L.; Liu, G.; Huang, S.; Yue, S.; Zhang, W.; Wu, H. J. Heterocycl. Chem. 2015, 52, 623.
      (b) Lohar, T.; Kumbhar, A.; Barge, M.; Salunkhe, R. J. Mol. Liq. 2016, 224, 1102.
      (c) Gaikwad, D. S.; Undale, K. A.; Patil, D. B.; Patravale, A. A.; Kamble, A. A. J. Iran. Chem. Soc. 2018, 15, 1175.
      (d) Wang, X. S.; Wu, J. R.; Zhou, J.; Zhang, M. M. J. Heterocycl. Chem. 2011, 48, 1056.
      (e) Zhang, M. M.; Wu, J. R.; Zhou, J.; Wang, X. S. Synth. Commun. 2012, 42, 599.

    5. [5]

      (a) Mojtahedi, M. M.; Pourabdi, L.; Abaee, M. S.; Jami, H.; Dini, M.; Halvagar, M. R. Tetrahedron 2016, 72, 1699.
      (b) Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Barba, F.; Batanero, B. Tetrahedron 2013, 69, 7125.
      (c) Khan, M. N.; Pal, S.; Karamthulla, S.; Choudhury, L. H. RSC Adv. 2014, 4, 3732.
      (d) Wang, J.; Li, Q.; Qi, C.; Liu, Y.; Ge, Z.; Li, R. Org. Biomol. Chem. 2010, 8, 4240.
      (e) Babu, T. H.; Joseph, A. A.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 994.
      (f) Elinson, M. N.; Vereshchagin, A. N.; Nasybullin, R. F.; Bobrovsky, S. I.; Ilovaisky, A. I.; Merkulova, V. M.; Bushmarinov, I. S.; Egorov, M. P. RSC Adv. 2015, 5, 50421.

    6. [6]

      Das, P.; Butcher, R. J.; Mukhopadhyay, C. Green Chem. 2012, 14, 1376.  doi: 10.1039/c2gc16641k

    7. [7]

      Zhang, L.; Wan, Y.; Zhang, X.; Cui, H.; Zou, H.; Zhou, Q. Wu, H. Tetrahedron Lett. 2015, 56, 4934.  doi: 10.1016/j.tetlet.2015.06.094

    8. [8]

      Maleki, B.; Rooky, R.; Rezaei-Seresht, E.; Tayebee R. Org. Prep. Proced. Int. 2017, 49, 557.  doi: 10.1080/00304948.2017.1384282

    9. [9]

      (a) Wang, X.; Zhang, M.; Li, Q.; Yao, C.; Tu, S. Tetrahedron 2007, 63, 5265.
      (b) Wang, X. S.; Zhou, J.; Yang, K.; Zhang, M. M. Synth. Commun. 2010, 40, 1065.

    10. [10]

      Molla, A.; Hussain, S. RSC Adv. 2014, 4, 29750.  doi: 10.1039/C4RA03627A

    11. [11]

      Azizi, N.; Ahooie, T. S.; Hashemi, M. M.; Azizi, N.; Ahooie, T. S.; Hashemi, M. M. J. Mol. Liq. 2017, 246, 221.  doi: 10.1016/j.molliq.2017.09.049

    12. [12]

      Huang, X. F.; Zhang, Y. F.; Qi, Z. H.; Li, N. K.; Geng, Z. C.; Li, K.; Wang, X. W. Org. Biomol. Chem. 2014, 12, 4372.  doi: 10.1039/c4ob00545g

    13. [13]

      For selected reactions catalyzed by DABCO see: (a) Maher, D.; Connon, S. Tetrahedron Lett. 2004, 45, 1301.
      (b) Luca, C.; Francesco, D. S.; Fabrizio, M. Eur. J. Org. Chem. 2006, 4852.
      (c) Baidya, M.; Kobayashi, S.; Brotzel, F.; Schmidhammer, U.; Riedle, E.; Mayr, H. Angew. Chem., Int. Ed. 2007, 46, 6176.
      (d) Chandrasekhar, S.; Narsihmulu, C.; Saritha, B.; Sultana, S. Tetrahedron Lett. 2004, 45, 5865.
      (e) Murthy, S. N.; Madhav, B.; Nageswar, Y. V. D. Tetrahedron Lett. 2010, 51, 5252.
      (f) Zhang, W.; Xu, H. D.; Xu, H.; Tang, W. P. J. Am. Chem. Soc. 2009, 131, 3832.
      (g) Meshram, H.M.; Kumar, G. S.; Ramesh, P.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 2580.
      (h) Fan, M.; Li, G.; Liang, Y. Tetrahedron 2006, 62, 6782.
      (i) Wu, J.; Sun, X. Y.; Li, Y. Z. Eur. J. Org. Chem. 2005, 4271.

    14. [14]

      Li, M.; Zhou, Z.; Wen, L.; Qiu, Z. J. Org. Chem. 2011, 76, 3054.  doi: 10.1021/jo102167g

    15. [15]

      Singh, M. S.; Nandi, G. C.; Samai, S. Green Chem. 2012, 14, 447.  doi: 10.1039/c1gc16129f

    16. [16]

      Liu, Y. F.; Du, Y. L.; Yu, A. M.; Mu, H. F.; Meng, X. T. Org. Biomol. Chem. 2016, 14, 1226.  doi: 10.1039/C5OB02383A

    17. [17]

      Chinchkar, S. M.; Patil, J. D.; Korade, S. N.; Gokavi, G. S.; Shejawal, R. V.; Pore, D. M. Lett. Org. Chem. 2017, 14, 403.

    18. [18]

      (a) Dong, D.-Q.; Chen, W.-J.; Chen, D.-M.; Li, L.-X.; Li, G.-H.; Wang, Z.-L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, DOI: 10.6023/cjoc201904070(inChinese).
      (董道青,陈文静,陈德茂,李丽霞,李光辉,王祖利,邓企,龙姝,有机化学,2019,39,DOI:10.6023/cjoc201904070.)
      (b)Dong,D.-Q.;Li,L.-X.;Li,G.-H.;Deng,Q.;Wang,Z.-L.;Long,S. Chin.J.Catal.2019,1494.
      (c)Xu,X.-M.;Chen,D.-M.;Wang,Z.-L. Chin.J.Org.Chem.2019,39,DOI:10.6023/cjoc201904068(inChinese).
      (徐鑫明,陈德茂,王祖利,有机化学,2019,39,DOI:10.6023/cjoc201904068.)
      (d)Hao,S.H.;Zhang,X.Y.;Dong,D.Q.;Wang,Z.L. Chin.Chem.Lett.2015,26,599.
      (e)Zhang,H.;Dong,D.-Q.;Hao,S.-H.;Wang,Z.L. RSCAdv.2016,6,8465.
      (f)Yan,S.Q.;Ding,N.;Zhang,W.;Wang,P.;Li,Y.X.;Li,M. Carbohydr.Res.2012,354,6.
      (g)Chun,Y.X.;Yan,S.Q.;Li,X.P.;Ding,N.;Zhang,W.;Wang,P.;Li,M.;Li,Y.X. TetrahedronLett.2011,52,6196.
      (h)Yan,S.Q.;Ding,N.;Zhang,W.;Wang,P.;Li,Y.X.;Li,M. J.Carbohydr.Chem.2012,31,571.
      (i)Hao,S.;Li,L.;Dong,D.Q.;Wang,Z.L.;Yu,X. TetrahedronLett.2018,59,4073.
      (j)Li,G.H.;Dong,D.Q.;Yang,Y.;Yu,X.Y.;Wang,Z.L. Adv.Synth.Catal.2019,361,832.
      (k)Li,G.-H.;Dong,D.-Q.;Yu,X.-Y.;Wang,Z.-L. NewJ.Chem.2019,43,1667.
      (l)Dong,D.-Q.;Chen,W.-J.;Yang,Y.;Gao,X.;Wang,Z.-L. ChemistrySelect2019,4,2480.

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    2. [2]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    3. [3]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    4. [4]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    5. [5]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    6. [6]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    7. [7]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    8. [8]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    9. [9]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    10. [10]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    11. [11]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    12. [12]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    13. [13]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    14. [14]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    15. [15]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    16. [16]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    17. [17]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    18. [18]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    19. [19]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    20. [20]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

Metrics
  • PDF Downloads(5)
  • Abstract views(958)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return