Photoinduced Atom-Economical Iterative Hydrotrifluoromethylation of Terminal Alkynes and Remote C(sp3)-H Functionalization
- Corresponding author: Xie Jin, xie@nju.edu.cn Zhu Chengjian, cjzhu@nju.edu.cn
Citation:
Liu Tao, Qu Chuanhua, Xie Jin, Zhu Chengjian. Photoinduced Atom-Economical Iterative Hydrotrifluoromethylation of Terminal Alkynes and Remote C(sp3)-H Functionalization[J]. Chinese Journal of Organic Chemistry,
;2019, 39(6): 1613-1622.
doi:
10.6023/cjoc201901021
Selected reviews:
(a) Bergman, R. G. Nature 2007, 446, 391.
(b) Lyons, T. W.; Sanford, M. Chem. Rev. 2010, 110, 1147.
For selected reviews on redox-neutral C(sp3)-H bond functionalization, see:
(a) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19, 13274.
(b) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
(c) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191.
(d) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
For selected examples on redox-neutral C(sp3)-H bond functionalization:
(e) Suh, C. W.; Kwon, S. J.; Kim, Y. Org. Lett. 2017, 19, 1334.
(f) Zhang, S.; Cheng, B.; Wang, S.; Zhou, L.; Tung, C.-H.; Wang, J.; Xu, Z. Org. Lett. 2017, 19, 1072.
(g) Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem. Soc. 2014, 136, 6123.
(h) Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2014, 136, 3744.
(i) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 10633.
(j) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424.
(k) Li, H.; Ren, X.-W.; Zhao, W.-T.; Tang, X.-Y.; Wang. G.-W. Chin. J. Org. Chem. 2017, 37, 2287.
(l) Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820.
Selected reviews:
(a) Hu, X.; Chen, J.; Xiao, W.; Angew. Chem., Int. Ed. 2017, 56, 1960.
(b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
Recent examples:
(c) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem. Int. Ed. 2016, 55, 1872.
(d) Wang, C.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 13495.
(e) Martinez, C.; Muniz, K. Angew. Chem. Int. Ed. 2015, 54, 8287.
(f) OBroin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436.
(g) Chu, J. C.; Rovis, T. Nature 2016, 539, 272.
(h) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
(i) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Yan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2015, 154, 4041.
(j) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Y.-P. Xiong, ; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2014, 53, 11890.
(k) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 345.
(l) Nie, X.; Cheng, C.; Zhu, G. Angew. Chem. Int. Ed. 2017, 56, 1898.
(m) Huang, L.; Ye, L.; Li, X.; Li, Z.; Lin, J.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(n) Ratushnyy, M.; Parasram, M.; Wang Y.; Gevorgyan, V. Angew. Chem. Int. Ed. 2018, 57, 2712.
Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
doi: 10.1039/B918763B
Selected reviews on Togni reagents, see:
(a) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(b) Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712.
(c) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(d) Yu, T.; Chen, S.; Gu. Q.-S.; Lin, J.-S.; Liu, X.-Y. Tetrahedron Lett. 2018, 59, 203.
Selected examples on the trifluoromethylation with Togni reagents, see:
(a) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120.
(b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(c) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577.
(d) Zhu, N.; Wang, F.; Chen, P.; Ye, J.; Liu, G. Org. Lett. 2015, 17, 3580.
(e) Huang, L.; Lin, J.; Tan, B.; Liu, X. ACS Catal. 2015, 5, 2826.
(f) Kawamura, S.; Egami, H.; Sodeoka, M. J. Am. Chem. Soc. 2015, 137, 4865.
(g) Yu, L.; Xu, Q.; Tang, X.; Shi, M. ACS Catal. 2016, 6, 526.
(h) Lin, J.; Dong, X.; Li, T.; Jiang, N.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(i) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
(j) Brantley, J. N.; Samant, A. V.; F. Toste, D. ACS Cent. Sci. 2016, 2, 341.
(k) Cheng, Y.; X. Dong, ; Gu, Q.; Yu, Z.; Liu, X.-Y. Angew. Chem. Int. Ed. 2017, 56, 8883.
(l) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.
(m) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem. Int. Ed. 2014, 53, 7144.
(n) Yu, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, B.-Z.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022.
(o) Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Yu, L.; Yu, D.-G. ACS Catal. 2017, 7, 8324.
(p) Wang, Q.; Gao, K.-C.; Zou, J.-P.; Zeng, R.-S. Chin. J. Org. Chem. 2018, 38, 863.
Although in a small portion of cases 2-iodobenzoic acid was considered to recover, extra steps before purification are needed.
(a) Modha, S. G.; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416.
(b) Tesky, C. J.; Sohel, S. M. A.; Bunting, D. L.; Modha, S. G.; Greaney, M. F. Angew. Chem. Int. Ed. 2017, 56, 5263.
(c) Buendia, J.; Darses, B.; Dauban, P. Angew. Chem. Int. Ed. 2015, 54, 5697.
(d) Buendia, J.; Grelier, G.; Darses, B.; Jarvis, A. G.; Taran, F.; Dauban, P. Angew. Chem. Int. Ed. 2016, 55, 7530.
(e) Wu, Y.; Izquierdo, S.; Vidossich, P.; Lledos, A.; Shafir, A. Angew. Chem. Int. Ed. 2016, 55, 7152.
(f) Wu, J.; Deng, X.; Hirao, H.; Yoshikai, N. J. Am. Chem. Soc. 2016, 138, 9105.
(g) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2016, 138, 2190.
(h) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2017, 139, 8420.
(i) Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.; Du, Z.; Wang, C. J. Am. Chem. Soc. 2013, 135, 18048.
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Ourserm, S.; Moore, R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(a) Xie, J.; Zhang, T.; Chen, F.; Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 2934.
(b) Xu, P.; Wang, G.; Zhu, Y.; Li, W.; Cheng, Y.; Li, S.; Zhu, C. Angew. Chem. Int. Ed. 2016, 55, 2939.
(c) Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 9416.
(d) Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2017, 56, 7266.
(e) Zhou, N.; Yuan, X.-A.; Zhao, Y.; Xie, J.; Zhu, C. Angew. Chem. Int. Ed. 2018, 57, 3990.
(f) Xu, W.; Ma, J.; Yuan, X.-A.; Dai, J.; Xie, J.; Zhu, C. Angew. Chem. Int. Ed. 2018, 57, 10357.
(g) Zhang, M.; Yuan, X.-A., Zhu, C.; Xie, J. Angew. Chem. Int. Ed. 2019, 58, 312.
(h) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun. 2018, 9, 3517.
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
(c) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-L.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
(d) Sun, X.-Y.; Yu, S.-Y. Chin. J. Org. Chem. 2016, 36, 239.
(e) Li, J.; Chen, J.-Z.; Huang, W.-H.; Cheng, X. Chin. J. Org. Chem. 2018, 38, 1507.
Ochiai, M.; Yamane, S.; Hoque, M. M.; Miyamoto, M.; Saito, K. Chem. Commun. 2012, 48, 5280.
doi: 10.1039/c2cc31523h
Selected examples:
(a) Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem. Int. Ed. 2014, 53, 359.
(b) Choi, S.; Kim, Y.; Kim, S.; J. Yang, W.; Kim, S. W.; Cho, E. J. Nat. Commun. 2014, 5, 4881.
(c) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962.
(d) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Eur. J. 2015, 21, 7648.
(a) Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabo, K. J. Org. Lett. 2012, 14, 2882.
(b) Lu, D.; Zhu, C.; Xu, H. Chem. Sci. 2013, 4, 2478.
(c) Shimizu, H.; Egami R.; Usui, Y.; Sodeoka, M. J. Fluorine Chem. 2014, 167, 172.
For a review on Pd-catalyzed cross-coupling reactions: Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
Gai, R.; Pinheiro, R. C.; Iveto, J. S. S.; Lglesias, B. A.; Acunha, T. V.; Back D. F.; Zeni, G. Green. Chem. 2016, 18, 6648.
doi: 10.1039/C6GC02423H
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Yuan Liu , Zhu Yin , Xintuo Yang , Jiajia Cheng . Advances in photocatalytic deracemization of sp3-hybridized chiral centers via hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110521-. doi: 10.1016/j.cclet.2024.110521
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Xin Wang , Changzhao Chen , Qishen Wang , Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Min Yan , Zihao Ye , Ping Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593