Citation: Liu Tao, Qu Chuanhua, Xie Jin, Zhu Chengjian. Photoinduced Atom-Economical Iterative Hydrotrifluoromethylation of Terminal Alkynes and Remote C(sp3)-H Functionalization[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1613-1622. doi: 10.6023/cjoc201901021 shu

Photoinduced Atom-Economical Iterative Hydrotrifluoromethylation of Terminal Alkynes and Remote C(sp3)-H Functionalization

  • Corresponding author: Xie Jin, xie@nju.edu.cn Zhu Chengjian, cjzhu@nju.edu.cn
  • Received Date: 16 January 2019
    Revised Date: 24 January 2019
    Available Online: 19 June 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21702098, 21732003, 21672099), the 1000-Youth Talents Plan and the Open Training Program of Undergraduate Organic Experiment Coursethe National Natural Science Foundation of China 21732003the National Natural Science Foundation of China 21702098the National Natural Science Foundation of China 21672099

Figures(4)

  • Trifluoromethylation using Togni reagents usually releases one equivalent of iodobenzoats as wasteful byproducts. A visible-light-mediated, atom-and step-economical hydrotrifluoromethylation of aromatic alkynes and remote benzoyl-oxylation of α-C(sp3)-H bond of ether with Togni reagent as a bifunctional reagent by means of hydrogen atom transfer strategy was disclosed. The combination of two organic transformations into one reaction not only brings 100% atom economy but also addresses the challenge of stereoselective hydrotrifluoromethylation of aromatic alkynes. This unprecedented protocol offers an important access to a wide range of highly functionalized CF3-containing alkenes with great potential for post-modification.
  • 加载中
    1. [1]

      Selected reviews:
      (a) Bergman, R. G. Nature 2007, 446, 391.
      (b) Lyons, T. W.; Sanford, M. Chem. Rev. 2010, 110, 1147.

    2. [2]

      For selected reviews on redox-neutral C(sp3)-H bond functionalization, see:
      (a) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19, 13274.
      (b) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
      (c) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191.
      (d) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
      For selected examples on redox-neutral C(sp3)-H bond functionalization:
      (e) Suh, C. W.; Kwon, S. J.; Kim, Y. Org. Lett. 2017, 19, 1334.
      (f) Zhang, S.; Cheng, B.; Wang, S.; Zhou, L.; Tung, C.-H.; Wang, J.; Xu, Z. Org. Lett. 2017, 19, 1072.
      (g) Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem. Soc. 2014, 136, 6123.
      (h) Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2014, 136, 3744.
      (i) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 10633.
      (j) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424.
      (k) Li, H.; Ren, X.-W.; Zhao, W.-T.; Tang, X.-Y.; Wang. G.-W. Chin. J. Org. Chem. 2017, 37, 2287.
      (l) Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820.

    3. [3]

      Selected reviews:
      (a) Hu, X.; Chen, J.; Xiao, W.; Angew. Chem., Int. Ed. 2017, 56, 1960.
      (b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
      Recent examples:
      (c) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem. Int. Ed. 2016, 55, 1872.
      (d) Wang, C.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 13495.
      (e) Martinez, C.; Muniz, K. Angew. Chem. Int. Ed. 2015, 54, 8287.
      (f) OBroin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436.
      (g) Chu, J. C.; Rovis, T. Nature 2016, 539, 272.
      (h) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
      (i) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Yan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2015, 154, 4041.
      (j) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Y.-P. Xiong, ; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2014, 53, 11890.
      (k) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 345.
      (l) Nie, X.; Cheng, C.; Zhu, G. Angew. Chem. Int. Ed. 2017, 56, 1898.
      (m) Huang, L.; Ye, L.; Li, X.; Li, Z.; Lin, J.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
      (n) Ratushnyy, M.; Parasram, M.; Wang Y.; Gevorgyan, V. Angew. Chem. Int. Ed. 2018, 57, 2712.

    4. [4]

      Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.  doi: 10.1039/B918763B

    5. [5]

      Selected reviews on Togni reagents, see:
      (a) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
      (b) Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712.
      (c) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
      (d) Yu, T.; Chen, S.; Gu. Q.-S.; Lin, J.-S.; Liu, X.-Y. Tetrahedron Lett. 2018, 59, 203.

    6. [6]

      Selected examples on the trifluoromethylation with Togni reagents, see:
      (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120.
      (b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
      (c) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577.
      (d) Zhu, N.; Wang, F.; Chen, P.; Ye, J.; Liu, G. Org. Lett. 2015, 17, 3580.
      (e) Huang, L.; Lin, J.; Tan, B.; Liu, X. ACS Catal. 2015, 5, 2826.
      (f) Kawamura, S.; Egami, H.; Sodeoka, M. J. Am. Chem. Soc. 2015, 137, 4865.
      (g) Yu, L.; Xu, Q.; Tang, X.; Shi, M. ACS Catal. 2016, 6, 526.
      (h) Lin, J.; Dong, X.; Li, T.; Jiang, N.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
      (i) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
      (j) Brantley, J. N.; Samant, A. V.; F. Toste, D. ACS Cent. Sci. 2016, 2, 341.
      (k) Cheng, Y.; X. Dong, ; Gu, Q.; Yu, Z.; Liu, X.-Y. Angew. Chem. Int. Ed. 2017, 56, 8883.
      (l) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.
      (m) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem. Int. Ed. 2014, 53, 7144.
      (n) Yu, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, B.-Z.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022.
      (o) Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Yu, L.; Yu, D.-G. ACS Catal. 2017, 7, 8324.
      (p) Wang, Q.; Gao, K.-C.; Zou, J.-P.; Zeng, R.-S. Chin. J. Org. Chem. 2018, 38, 863.

    7. [7]

      Although in a small portion of cases 2-iodobenzoic acid was considered to recover, extra steps before purification are needed.

    8. [8]

      (a) Modha, S. G.; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416.
      (b) Tesky, C. J.; Sohel, S. M. A.; Bunting, D. L.; Modha, S. G.; Greaney, M. F. Angew. Chem. Int. Ed. 2017, 56, 5263.
      (c) Buendia, J.; Darses, B.; Dauban, P. Angew. Chem. Int. Ed. 2015, 54, 5697.
      (d) Buendia, J.; Grelier, G.; Darses, B.; Jarvis, A. G.; Taran, F.; Dauban, P. Angew. Chem. Int. Ed. 2016, 55, 7530.
      (e) Wu, Y.; Izquierdo, S.; Vidossich, P.; Lledos, A.; Shafir, A. Angew. Chem. Int. Ed. 2016, 55, 7152.
      (f) Wu, J.; Deng, X.; Hirao, H.; Yoshikai, N. J. Am. Chem. Soc. 2016, 138, 9105.
      (g) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2016, 138, 2190.
      (h) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2017, 139, 8420.
      (i) Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.; Du, Z.; Wang, C. J. Am. Chem. Soc. 2013, 135, 18048.

    9. [9]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Ourserm, S.; Moore, R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

    10. [10]

      (a) Xie, J.; Zhang, T.; Chen, F.; Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 2934.
      (b) Xu, P.; Wang, G.; Zhu, Y.; Li, W.; Cheng, Y.; Li, S.; Zhu, C. Angew. Chem. Int. Ed. 2016, 55, 2939.
      (c) Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 9416.
      (d) Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2017, 56, 7266.
      (e) Zhou, N.; Yuan, X.-A.; Zhao, Y.; Xie, J.; Zhu, C. Angew. Chem. Int. Ed. 2018, 57, 3990.
      (f) Xu, W.; Ma, J.; Yuan, X.-A.; Dai, J.; Xie, J.; Zhu, C. Angew. Chem. Int. Ed. 2018, 57, 10357.
      (g) Zhang, M.; Yuan, X.-A., Zhu, C.; Xie, J. Angew. Chem. Int. Ed. 2019, 58, 312.
      (h) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun. 2018, 9, 3517.

    11. [11]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (b) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
      (c) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-L.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
      (d) Sun, X.-Y.; Yu, S.-Y. Chin. J. Org. Chem. 2016, 36, 239.
      (e) Li, J.; Chen, J.-Z.; Huang, W.-H.; Cheng, X. Chin. J. Org. Chem. 2018, 38, 1507.

    12. [12]

      Ochiai, M.; Yamane, S.; Hoque, M. M.; Miyamoto, M.; Saito, K. Chem. Commun. 2012, 48, 5280.  doi: 10.1039/c2cc31523h

    13. [13]

      Selected examples:
      (a) Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem. Int. Ed. 2014, 53, 359.
      (b) Choi, S.; Kim, Y.; Kim, S.; J. Yang, W.; Kim, S. W.; Cho, E. J. Nat. Commun. 2014, 5, 4881.
      (c) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962.
      (d) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Eur. J. 2015, 21, 7648.

    14. [14]

      (a) Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabo, K. J. Org. Lett. 2012, 14, 2882.
      (b) Lu, D.; Zhu, C.; Xu, H. Chem. Sci. 2013, 4, 2478.
      (c) Shimizu, H.; Egami R.; Usui, Y.; Sodeoka, M. J. Fluorine Chem. 2014, 167, 172.

    15. [15]

      For a review on Pd-catalyzed cross-coupling reactions: Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.

    16. [16]

      Gai, R.; Pinheiro, R. C.; Iveto, J. S. S.; Lglesias, B. A.; Acunha, T. V.; Back D. F.; Zeni, G. Green. Chem. 2016, 18, 6648.  doi: 10.1039/C6GC02423H

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    3. [3]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    4. [4]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    5. [5]

      Yuan LiuZhu YinXintuo YangJiajia Cheng . Advances in photocatalytic deracemization of sp3-hybridized chiral centers via hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110521-. doi: 10.1016/j.cclet.2024.110521

    6. [6]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    9. [9]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    10. [10]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    11. [11]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    12. [12]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    13. [13]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    14. [14]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    15. [15]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    18. [18]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    19. [19]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    20. [20]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

Metrics
  • PDF Downloads(5)
  • Abstract views(721)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return