Citation: Lai Shilin, Liao Xu, Zhang Hui, Jiang Yan, Liu Yuangang, Wang Shibin, Xiong Xingquan. Application of 3D Printing Technology in Organic Synthetic Chemistry[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1858-1866. doi: 10.6023/cjoc201901001 shu

Application of 3D Printing Technology in Organic Synthetic Chemistry

  • Corresponding author: Liu Yuangang, ygliu@hqu.edu.cn Xiong Xingquan, xxqluli@hqu.edu.cn
  • Received Date: 2 January 2019
    Revised Date: 12 March 2019
    Available Online: 29 July 2019

    Fund Project: Project supported by the Natural Science Foundation of Fujian Province (No. 2016J01063), the Program for New Century Excellent Talents in Fujian Province (No. 2012FJ-NCET-ZR03) and the University Distinguished Young Research Talent Training Program of Fujian Province (No. 11FJPY02), the National Marine Economic Innovation and Development Project (No. 16PYY007SF17) and the Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao Universitythe Program for New Century Excellent Talents in Fujian Province 2012FJ-NCET-ZR03the University Distinguished Young Research Talent Training Program of Fujian Province 11FJPY02the National Marine Economic Innovation and Development Project 16PYY007SF17the Natural Science Foundation of Fujian Province 2016J01063

Figures(16)

  • Compared with traditional material removal-cutting method, 3D printing is a "bottom-up" material accumulation manufacturing technology. This novel technology is not only simple to operate, but also has a lower manufacturing cost and can be quickly generated. What's more, 3D printing technology can fabricate the be-spoke objects with intricate internal structures. Therefore, 3D printing has been a representative technology of the third industrial revolution. In recent years, chemists have combined 3D printing technology with organic synthesis and made many good achievements in the development of new multichannel heterogeneous catalysts and reaction devices, which has made this technology more and more widely used in the field of organic synthesis. In this review, the progress of the organic synthesis based on 3D printing technology from 2012 to 2018 are summarized, such as 3D-printed heterogeneous catalysts, 3D-printed devices and 3D-printed continuous flow microreactors. Furthermore, the development trends of this field in the future are also prospected.
  • 加载中
    1. [1]

      Hull, C. W. US 04575330, 1986.

    2. [2]

      Huang, W. D. J. New Industrialization 2016, 6, 53 (in Chinese).  doi: 10.3969/j.issn.2095-6649.2016.02.009

    3. [3]

      Gunther, D.; Heymel, B.; Gunther, J. F.; Ederer, I. Rapid Prototyping J. 2014, 20, 320.  doi: 10.1108/RPJ-08-2012-0068

    4. [4]

      Ding, Y. C. Minying Keji 2018, (7), 166(in Chinese).

    5. [5]

      Zhang, M.; Jiang, M.-H.; Wu, G.-H.; Yang, Q.-L. Beverage Ind. 2015, 18, 57(in Chinese).

    6. [6]

      Jing, L. G.; Shen, L. J. Biology Teaching 2016, 41, 6(in Chinese).

    7. [7]

      Hu, Y. P. Mech. Res. Appl. 2016, 29, 193(in Chinese).

    8. [8]

      Zhu, G.; Mo, W.-J. Val. Eng. 2015, 34, 178(in Chinese).  doi: 10.3969/j.issn.1006-4311.2015.01.090

    9. [9]

      Paulsen, S. J.; Miller, J. S. Dev. Dynam. 2015, 244, 320.

    10. [10]

      He, C. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Acta Polym. Sin. 2013, (6), 722 (in Chinese).

    11. [11]

      Zhang, X. J.; Tang, S. Y.; Zhao, H. Y.; Guo, S. Q.; Li, N.; Chen, B. Q. J. Mater. Eng. 2016, 44, 122 (in Chinese).

    12. [12]

      Chen, S. P.; Yi, H.-P.; Luo, Z. H.; Zhu Ge, X. Q.; Luo, K. Mater. Rev. 2016, 30, 54 (in Chinese).  doi: 10.11896/j.issn.1005-023X.2016.07.010

    13. [13]

      Li, X.-L.; Ma, J.-X.; Li, P.; Chen, Q.; Zhou, W.-M. Proc. Autom. Instrum. 2014, 35, 1 (in Chinese).

    14. [14]

      Rossi, S.; Puglisi, A.; Benaglia, M. ChemCatChem 2018, 10, 1512.  doi: 10.1002/cctc.201701619

    15. [15]

      Tubío, C. R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. J. Catal. 2016, 334, 110.  doi: 10.1016/j.jcat.2015.11.019

    16. [16]

      Azuaje, J.; Tubío, C. R.; Escalante, L.; Gómez, M.; Guitián, F.; Coelho, A.; Caamaño, O.; Gil, A.; Sotelo, E. Appl. Catal. A-Gen. 2017, 530, 203.  doi: 10.1016/j.apcata.2016.11.031

    17. [17]

      Manzano, J. S.; Weinstein, Z. B.; Sadow, A. D.; Slowing, I. I. ACS Catal. 2017, 7, 7567.  doi: 10.1021/acscatal.7b02111

    18. [18]

      Díaz-Marta, A. S.; Tubío, C. R.; Carbajales, C.; Fernandez, C.; Escalante L.; Sotelo, E.; Guitian, F.; Barrio, V. L.; Gil, A.; Coelho, A. ACS Catal. 2018, 8, 392.  doi: 10.1021/acscatal.7b02592

    19. [19]

      Symes, M. D.; Kitson, P. J.; Yan, J.; Richmond, C. J.; Cooper, G. J.; Bowman, R. W.; Vilbrandt, T.; Cronin, L. Nat. Chem. 2012, 4, 349.  doi: 10.1038/nchem.1313

    20. [20]

      Johnson, R. D. Nat. Chem. 2012, 4, 338.  doi: 10.1038/nchem.1333

    21. [21]

      Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Chem. Sci. 2013, 4, 3099.  doi: 10.1039/C3SC51253C

    22. [22]

      Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C. G.; Song, Y. F.; Cronin, L. Nat. Protoc. 2016, 11, 920.  doi: 10.1038/nprot.2016.041

    23. [23]

      Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Beilstein J. Nanotechnol. 2013, 4, 285.  doi: 10.3762/bjnano.4.31

    24. [24]

      Kitson, P. J.; Glatzel, S.; Cronin, L. Beilstein J. Org. Chem. 2016, 12, 2776.  doi: 10.3762/bjoc.12.276

    25. [25]

      Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Chem. Sci. 2016, 7, 6740.  doi: 10.1039/C6SC02132H

    26. [26]

      Kucherov, F. A.; Gordeev, E. G.; Kashin, A. S.; Ananikov, V. P. Angew. Chem. 2017, 29, 16147.

    27. [27]

      Gordeev, E. G.; Degtyareva, E. S.; Ananikov, V. P. Russ. Chem. B 2016, 65, 1637.  doi: 10.1007/s11172-016-1492-y

    28. [28]

      Lederle, F.; Meyer, F.; Kaldun, C.; Namyslo, J. C.; Hübner, E. G. New J. Chem. 2017, 41, 1925.  doi: 10.1039/C6NJ03614G

    29. [29]

      Kitson, P. J.; Rosnes, M. H.; Sans, V.; Dragone, V.; Cronin, L. Lab Chip. 2012, 12, 3267.  doi: 10.1039/c2lc40761b

    30. [30]

      Dragone, V.; Sans, V.; Rosnes, M. H.; Kitson, P. J.; Cronin, L. Beilstein J. Org. Chem. 2013, 9, 951.  doi: 10.3762/bjoc.9.109

    31. [31]

      Elias, Y.; von Rohr, P. R.; Bonrath, W.; Medlock, J.; Buss, A. Chem. Eng. Process 2015, 95, 175.  doi: 10.1016/j.cep.2015.05.012

    32. [32]

      Avril, A.; Hornung, C. H.; Urban, A.; Fraser, D.; Horne, M.; Veder, J. P.; Tsanaktsidis, J.; Rodopoulos, T.; Henry, C.; Gunasegaram, D. R. React. Chem. Eng. 2017, 2, 180.  doi: 10.1039/C6RE00188B

    33. [33]

      Hornung, C. H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A.; Fraser, D.; Horne, M. D.; Gunasegaram, D. R.; Tsanaktsidis, J. Org. Process Res. Dev. 2017, 21, 1311.  doi: 10.1021/acs.oprd.7b00180

    34. [34]

      Capel, A. J.; Wright, A.; Harding, M. J.; Weaver, G. W.; Li, Y.; Harris, R. A.; Edmondson, S.; Goodridge, R. D.; Christie, S. D. Beilstein J. Org. Chem. 2017, 13, 111.  doi: 10.3762/bjoc.13.14

    35. [35]

      Rossi, S.; Porta, R.; Brenna, D.; Puglisi, A.; Benaglia, M. Angew. Chem. 2017, 129, 4354.  doi: 10.1002/ange.201612192

    36. [36]

      Rao, Z. X.; Patel, B.; Monaco, A.; Cao, Z. J.; Barniol-Xicota, M.; Pichon, E.; Ladlow, M.; Hilton, S. Eur. J. Org. Chem. 2017, 44, 6499.

    37. [37]

      Bettermann, S.; Schroeter, B.; Morit, H.-U.; Pauer, W.; Fassbender, W.; Luinstra, G. A. Chem. Eng. J. 2018, 338, 311.  doi: 10.1016/j.cej.2018.01.038

    38. [38]

      Genet, C.; Nguyen, X.; Bayatsarmadi, B.; Horne, M. D.; Gardiner, J.; Hornung, C. H. J. Flow. Chem. 2018, 8, 81.  doi: 10.1007/s41981-018-0013-6

    39. [39]

      Kitson, P. J.; Marie, G.; Francoia, J.-P.; Zalesskiy, S. S.; Sigerson, R. C.; Mathieson, J. S.; Cronin, L. Science 2018, 359, 314.  doi: 10.1126/science.aao3466

    40. [40]

      Huang, J.; Jiang, S. Adv. Mater. Ind. 2013, (1), 62 (in Chinese).

  • 加载中
    1. [1]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    2. [2]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    3. [3]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    12. [12]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    13. [13]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    14. [14]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    20. [20]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(19)
  • Abstract views(2067)
  • HTML views(454)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return