Citation: Xu Lulu, Ye Qianwen, Cheng Dongping, Li Xiaonian, Xu Xiaoliang. Regioselective Ring-Opening Reaction of Cyclopropene Carboxylate Promoted by N-Bromosuccinimide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2645-2649. doi: 10.6023/cjoc201812029 shu

Regioselective Ring-Opening Reaction of Cyclopropene Carboxylate Promoted by N-Bromosuccinimide

  • Corresponding author: Cheng Dongping, chengdp@zjut.edu.cn Li Xiaonian, xnli@zjut.edu.cn; xuxiaoliang@zjut.edu.cn Xu Xiaoliang, xuxiaoliang@zjut.edu.cn
  • Received Date: 16 December 2018
    Revised Date: 28 March 2019
    Available Online: 11 September 2019

    Fund Project: the Zhejiang Provincial Natural Science Foundation of China LY18B020018the National Science Foundation of China 21602197Project supported by the Zhejiang Provincial Natural Science Foundation of China (Nos. LY18B020018, LY15B020004) and the National Science Foundation of China (No. 21602197)the Zhejiang Provincial Natural Science Foundation of China LY15B020004

Figures(1)

  • The cyclopropene compound contains an intra carbon-carbon double bond structure, which leads to distinctive active chemical reactivity due to the large ring tension. In this paper, the N-bromosuccinimide-promoted regioselective ring-opening of cyclopropene dicarboxylates to give functionalized α, β-unsaturated carboxylic acid ester compounds was studied. The reaction conditions are mild and the operation is simple.
  • 加载中
    1. [1]

      (a) Wang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. Y. Angew. Chem. Int. Ed. 2008, 47, 7350.
      (b) Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shiro, M.; Ando, K.; Hashimoto, S. Angew. Chem., Int. Ed. 2011, 50, 6803.
      (c) Chen, J.; Ma, S. Chem. Asian J. 2010, 5, 2415.
      (d) Song, C.; Ju, L.; Wang, M.; Liu, P.; Zhang, Y.; Wang, J.; Xu, Z. Chem. Eur. J. 2013, 19, 3584.
      (e) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
      (f) Archambeau, A.; Miege, F.; Meyer, C.; Cossy, J. Acc. Chem. Res. 2015, 48, 1021.

    2. [2]

      (a) Chuprakov, S.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 3714.
      (b) Paswa, A. Acc. Chem. Res. 1979, 12, 310.
      (c) Chen, J.; Ni, S.; Ma, S. Synlett 2011, 931.
      (d) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546.
      (e) Zhu, P. L.; Tang, X. Y.; Shi, M. Chem. Commun. 2016, 52, 7245.
      (f) Song, C.; Sun, D.; Peng, X.; Bai, J.; Zhang, R.; Hou, S.; Wang, J.; Xu, Z. Chem. Commun. 2013, 49, 9167.
      (g) Padwa, A. Acc. Chem. Res. 1979, 12, 310.

    3. [3]

      (a) Welch, J. G.; Magid, R. M. J. Am. Chem. Soc. 1967, 89, 5300.
      (b) Kubota, K.; Mori, S.; Nakamura, E. J. Am. Chem. Soc. 1998, 120, 13334.
      (c) Liao, L.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322.
      (d) Liao, L.; Zhang, F.; Yan, N.; Golen, J. A.; Fox, J. M. Tetrahedron. 2004, 60, 1803.
      (e) Miege, F.; Meyer, J.; Cossy, J. Org. Lett. 2010, 12, 4144.

    4. [4]

      (a) Ma, S.; Zhang, J.; Cai, Y.; Lu, L. J. Am. Chem. Soc. 2003, 125, 13954.
      (b) Liu, Y.; Ma, S. Org. Lett. 2012, 14, 720.
      (c) Liu, Y.; Yu, Q.; Ma, S. Eur. J. Org. Chem. 2013, 15, 3033.
      (d) Wang, Y.; Lam, H. W. J. Org. Chem. 2009, 74, 1353.
      (e) Wang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. W. Angew. Chem. Int. Ed. 2008, 47, 7350.

    5. [5]

      (a) Fordyce, E. A. F.; Wang, Y.; Luebbers, T.; Lam, H. W. Chem. Commun. 2008, 1124.
      (b) Maksic, M. E.; Golic, M.; Tolic, L. P. J. Org. Chem. 1995, 489, 35.
      (c) Liao, L.; Yan, N.; Fox, J. M. Org. Lett. 2004, 6, 4937.

    6. [6]

      (a) Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.; Guo, Y. L.; Zhang, J. L. Angew. Chem. Int. Ed. 2018, 57, 15787.
      (b) Fulton, J. L.; Horwitz, M. A.; Bruske, E. L.; Johnson, J. S. J. Org. Chem. 2018, 83, 3385.
      (c) Horwitz, M. A.; Fulton, J. L.; Johnson, J. S. Org. Lett. 2017, 19, 5783.

    7. [7]

      Ye, Q. W.; Ye, H. Q.; Cheng, D. P.; Li, X. N.; Xu, X. L. Tetrahedron Lett. 2018, 59, 2546.  doi: 10.1016/j.tetlet.2018.05.047

    8. [8]

      (a) Ye, H. Q.; Ye, Q. W.; Cheng, D. P.; Li, X. N.; Xu, X. L. Tetrahedron Lett. 2018, 59, 2046.
      (b) Dai, X. J.; Cheng, D. P.; Guan, B. C.; Mao, W. J.; Xu, X. L.; Li, X. N. J. Org. Chem. 2014, 79, 7212.
      (c) Ye, Q. W.; Xu, X. L.; Cheng, D. P.; Guan, B. C.; Ye, H. F.; Li, X. N. ARKIVOC 2017, 314.
      (d) Chen, J.; Cen, J.; Xu, X. L.; Li, X. N. Catal. Sci. Technol. 2016, 6, 349.

    9. [9]

      (a) Liu, K.; Jiang, H. J.; Li, Na.; Li, H.; Wang, J.; Zhang, Z. Z.; Yu, J. J. Org. Chem. 2018, 83, 6815.
      (b) Huang, P.; Peng, X.; Hu, D.; Liao, H.; Tang, S.; Liu, L. Org. Biomol. Chem. 2017, 15, 9622.
      (c) Wang, H.; Huang, L.; Cao, X.; Liang, D.; Peng, A. Y. Org. Biomol. Chem. 2017, 15, 7396.
      (d) Wang, D.; Yan, Z.; Xie, Q.; Zhang, R.; Lin, S.; Wang, Y. Org. Biomol. Chem. 2017, 15, 1998.
      (e) Sathe, P. A.; Karpe, A. S, ; Parab, A. A.; Parade, B. S.; Vadagaonkar, K. S.; Chaskar, A. C. Tetrahedron Lett. 2018, 59, 2820.
      (f) Qian, M.; Qin, B.; Yuan, H. Y.; Li, W. L.; Zhang, J. P. J. Comput. Chem. 2018, 39, 2324.
      (g) Pardeshi, S. D.; Sathe, P. A.; Wadagaonkar, K. S.; Chaskar, A. C. Adv. Synth. Catal. 2017, 359, 4217。
      (h) Shinde, M. H.; Kshirsagar, U. A. Green Chem. 2016, 18, 1455.

    10. [10]

      (a) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
      (b) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem. Soc. 2014, 136, 4141.
      (c) Chen, S. Y.; Feng, B. Y.; Zheng, X. S.; Yin, J. L.; Yang, S. P.; You, J. S. Org. Lett. 2017, 19, 2502.
      (d) Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736.

    11. [11]

      (a) Simone, F. D.; Saget, T.; Benfatti, F.; Almeida, S.; Waser, J. Chem. Eur. J. 2011, 17, 14527.
      (b) Jiang, Y.; Khong, V. Z. Y.; Lourdusamy, E.; Park, C. M. Chem. Commun. 2012, 48, 3133.
      (c) Pandit, R. P.; Kim, S. H.; Lee, Y. R. Adv. Synth. Catal. 2016, 358, 3586.
      (d) Keipour, H.; Jalba, A.; Laurin, L. D.; Ollevier, T. J. Org. Chem. 2017, 82, 3000.

    12. [12]

      (a) Bobes, F. G.; Fenster, M. D. B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Adv. Synth. Catal. 2008, 350, 813.
      (b) Dange, N. S.; Robert, F.; Landais, Y. Org. Lett. 2016, 18, 6156.
      (c) Wheeler, T.; Ray, J. J. Org. Chem. 1987, 52, 4875.

  • 加载中
    1. [1]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    9. [9]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    15. [15]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    16. [16]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    17. [17]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(4)
  • Abstract views(939)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return