Citation: Feng Tong, Xue Zhongbo, Yin Juanjuan, Jiang Xu, Feng Yaqing, Meng Shuxian. Application of Fluoroboron Fluoresceins (BODIPYS) and Their Derivatives in the Synergistic Diagnosis and Treatment of Tumor[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1891-1912. doi: 10.6023/cjoc201812016 shu

Application of Fluoroboron Fluoresceins (BODIPYS) and Their Derivatives in the Synergistic Diagnosis and Treatment of Tumor

  • Corresponding author: Meng Shuxian, msxmail@tju.edu.cn
  • Received Date: 10 December 2018
    Revised Date: 6 January 2019
    Available Online: 19 July 2019

    Fund Project: the China International Science and Technology Project 2012DFG41980the China International Science and Technology Project 2016YFE0114900Project supported by the National Natural Science Foundation of China (No. 21676187), and the China International Science and Technology Project (Nos. 2012DFG41980, 2016YFE0114900)the National Natural Science Foundation of China 21676187

Figures(35)

  • Tumor is one of the diseases with the highest mortality rate in the world. In view of the high risk and high mortality of tumor, researchers around the world are committed to develop more accurate and rapid diagnostic strategies and more effective treatments to fight tumor. Gradually, integrated optical diagnosis and treatment technologies for tumors have emerged. Fluoroboron fluorescein (BODIPY) has been widely used in tumor phototherapy because of its excellent optical properties. In this paper, BODIPY and its derivatives are introduced in detail as photosensitizers, photothermal transformants, and contrast agents in the diagnosis and treatment of tumors (photodynamic therapy, photothermal therapy, photoacoustic imaging) and integration of diagnosis and treatment. The effects of different BODIPY structures and their derivatives in tumor diagnosis and treatment were evaluated systematically. This is of great significance for the rational design of near-infrared BODIPY materials with high singlet oxygen quantum yield, high photothermal conversion, and good light stability and solubility.
  • 加载中
    1. [1]

      Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. ACS Nano 2018.

    2. [2]

      Matsui, H.; Hazama, S.; Shindo, Y.; Nagano, H. Expert Rev. Anticancer Ther. 2018, 18, 1205.  doi: 10.1080/14737140.2018.1531707

    3. [3]

      Bertrand, B.; Passador, K.; Goze, C.; Denat, F.; Bodio, E.; Salmain, M. Coord. Chem. Rev. 2018, 358, 108.  doi: 10.1016/j.ccr.2017.12.007

    4. [4]

      Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77.  doi: 10.1039/C2CS35216H

    5. [5]

      Yao, L.; Xiao, S.; Dan, F. J. Chem. 2013, 2013, 10.

    6. [6]

      Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904.  doi: 10.1039/C5CS00364D

    7. [7]

      Awuah, S. G.; You, Y. RSC Adv. 2012, 2, 11169.  doi: 10.1039/c2ra21404k

    8. [8]

      Durantini, A. M.; Heredia, D. A.; Durantini, J. E.; Durantini, E. N. Eur. J. Med. Chem. 2018, 144, 651.  doi: 10.1016/j.ejmech.2017.12.068

    9. [9]

      Zhang, J.; Jiang, C.; Figureueiro Longo, J. P.; Azevedo, R. B.; Zhang, H.; Muehlmann, L. A. Acta Pharm. Sin. B 2018, 8, 137.  doi: 10.1016/j.apsb.2017.09.003

    10. [10]

      Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 2188.  doi: 10.1039/C7SC04694D

    11. [11]

      Raza, M. K.; Gautam, S.; Howlader, P.; Bhattacharyya, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 14374.  doi: 10.1021/acs.inorgchem.8b02546

    12. [12]

      Wang, Q.; Ng, D. K.; Lo, P.-C. J. Mater. Chem. B 2018, 6, 3285.  doi: 10.1039/C8TB00593A

    13. [13]

      Ruan, Z.; Miao, W.; Yuan, P.; Le, L.; Jiao, L.; Hao, E.; Yan, L. Bioconjugate Chem. 2018, 29, 3441.  doi: 10.1021/acs.bioconjchem.8b00576

    14. [14]

      Yuan, P.; Ruan, Z.; Jiang, W.; Liu, L.; Dou, J.; Li, T.; Yan, L. J. Mater. Chem. B 2018, 6, 2323.  doi: 10.1039/C8TB00493E

    15. [15]

      Yuan, P.; Ruan, Z.; Li, T.; Tian, Y.; Cheng, Q.; Yan, L. Nanomedicine 2018, 15, 198.

    16. [16]

      Ruan, Z.; Zhao, Y.; Yuan, P.; Liu, L.; Wang, Y.; Yan, L. J. Mater. Chem. B 2018, 6, 753.  doi: 10.1039/C7TB02924A

    17. [17]

      Liu, L.; Li, T.; Ruan, Z.; Yan, L. J. Mater. Sci. 2018, 53, 9368.  doi: 10.1007/s10853-018-2276-6

    18. [18]

      Chen, H.; Bi, Q.; Yao, Y.; Tan, N. J. Mater. Chem. B 2018, 6, 4351.  doi: 10.1039/C8TB00665B

    19. [19]

      Wang, W.; Wang, L.; Li, Z.; Xie, Z. Chem. Commun. 2016, 52, 5402.  doi: 10.1039/C6CC01048B

    20. [20]

      Guan, Q.; Zhou, L. L.; Li, Y. A.; Dong, Y. B. Inorg. Chem. 2018, 57, 10137.  doi: 10.1021/acs.inorgchem.8b01316

    21. [21]

      Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Chem. Soc. Rev. 2019.

    22. [22]

      Kim, S. H.; Lee, J. E.; Sharker, S. M.; Jeong, J. H.; In, I.; Park, S. Y. Biomacromolecules 2015, 16, 3519.  doi: 10.1021/acs.biomac.5b00944

    23. [23]

      Liu, Y.; Song, N.; Chen, L.; Liu, S.; Xie, Z. Chem. Asian J. 2018, 13, 989.  doi: 10.1002/asia.201701727

    24. [24]

      Xu, Y.; Feng, T.; Yang, T.; Wei, H.; Yang, H.; Li, G.; Zhao, M.; Liu, S.; Huang, W.; Zhao, Q. ACS Appl. Mater. Interfaces 2018, 10, 16299.  doi: 10.1021/acsami.8b03568

    25. [25]

      Zhu, Y.; Lin, W.; Wang, X.; Zhang, W.; Chen, L.; Xie, Z. Chem. Commun. 2018, 54, 11921.  doi: 10.1039/C8CC07106C

    26. [26]

      Lin, W.; Sun, T.; Xie, Z.; Gu, J.; Jing, X. Chem. Sci. 2016, 7, 1846.  doi: 10.1039/C5SC03707G

    27. [27]

      Sharker, S. M.; Kang, E. B.; Shin, C. I.; Kim, S. H.; Lee, G.; Park, S. Y. J. Appl. Polym. Sci. 2016, 133.

    28. [28]

      Kang, E. B.; Lee, J. E.; Jeong, J. H.; Lee, G.; In, I.; Park, S. Y. J. Ind. Eng. Chem. 2016, 33, 336.  doi: 10.1016/j.jiec.2015.10.026

    29. [29]

      Li, J.; Rao, J.; Pu, K. Biomaterials 2018, 155, 217.  doi: 10.1016/j.biomaterials.2017.11.025

    30. [30]

      Lyu, Y.; Zeng, J.; Jiang, Y.; Zhen, X.; Wang, T.; Qiu, S.; Lou, X.; Gao, M.; Pu, K. ACS Nano 2018, 12, 1801.  doi: 10.1021/acsnano.7b08616

    31. [31]

      Zhou, E. Y.; Knox, H. J.; Reinhardt, C. J.; Partipilo, G.; Nilges, M. J.; Chan, J. J. Am. Chem. Soc. 2018, 140, 11686.  doi: 10.1021/jacs.8b05514

    32. [32]

      Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Laoui, S.; La, J.; Bag, S.; Mallidi, S.; Hasan, T.; Bouma, B.; Yelleswarapu, C. J. Am. Chem. Soc. 2014, 136, 15853.  doi: 10.1021/ja508600x

    33. [33]

      Laoui, S.; Bag, S.; Dantiste, O.; Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Tseng, J. C.; Rochford, J.; Yelleswarapu, C. Inter. Soc. Opt. 2014, 89, 5609.

    34. [34]

      Ni, Y.; Kannadorai, R. K.; Peng, J.; Yu, S. W.; Chang, Y. T.; Wu, J. Chem. Commun. 2016, 52, 11504.  doi: 10.1039/C6CC05126J

    35. [35]

      Ni, Y.; Kannadorai, R. K.; Yu, S. W.; Chang, Y. T.; Wu, J. Org. Biomol. Chem. 2017, 15, 4531.  doi: 10.1039/C7OB00965H

    36. [36]

      Chen, Q.; Liu, X.; Chen, J.; Zeng, J.; Cheng, Z.; Liu, Z. Adv. Mater. 2015, 27, 6820.  doi: 10.1002/adma.201503194

    37. [37]

      Liu, X.; Zhao, M.; Chen, P.; Fan, Q.; Wang, W.; Huang, W. J. Mater. Chem. B 2018, 6, 4531.  doi: 10.1039/C8TB01158C

    38. [38]

      Miki, K.; Enomoto, A.; Inoue, T.; Nabeshima, T.; Saino, S.; Shimizu, S.; Matsuoka, H.; Ohe, K. Biomacromolecules 2017, 18, 249.  doi: 10.1021/acs.biomac.6b01568

    39. [39]

      Zhao, M.; Xu, Y.; Xie, M.; Zou, L.; Wang, Z.; Liu, S.; Zhao, Q. Adv. Healthcare Mater. 2018, 7, 1800606.  doi: 10.1002/adhm.201800606

    40. [40]

      Wang, Q.; Tian, L.; Xu, J.; Xia, B.; Li, J.; Lu, F.; Lu, X.; Wang, W.; Huang, W.; Fan, Q. Chem. Commun. 2018, 54, 10328.  doi: 10.1039/C8CC05560B

    41. [41]

      Chen, D.; Zhang, J.; Tang, Y.; Huang, X.; Shao, J.; Si, W.; Ji, J.; Zhang, Q.; Huang, W.; Dong, X. J. Mater. Chem. B 2018, 6, 4522.  doi: 10.1039/C8TB01347K

    42. [42]

      Liu, Y.; Song, N.; Li, Z.; Chen, L.; Xie, Z. Dyes Pigm. 2019, 160, 71.  doi: 10.1016/j.dyepig.2018.07.034

    43. [43]

      Lu, W. L.; Lan, Y. Q.; Xiao, K. J.; Xu, Q. M.; Qu, L. L.; Chen, Q. Y.; Huang, T.; Gao, J.; Zhao, Y. J. Mater. Chem. B 2017, 5, 1275.  doi: 10.1039/C6TB02575G

    44. [44]

      Zou, J.; Wang, P.; Wang, Y.; Liu, G.; Zhang, Y.; Zhang, Q.; Shao, J.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2018.

    45. [45]

      Ye, S.; Rao, J.; Qiu, S.; Zhao, J.; He, H.; Yan, Z.; Yang, T.; Deng, Y.; Ke, H.; Yang, H.; Zhao, Y.; Guo, Z.; Chen, H. Adv. Mater. 2018, 1801216.

    46. [46]

      Gawale, Y.; Adarsh, N.; Kalva, S. K.; Joseph, J.; Pramanik, M.; Ramaiah, D.; Sekar, N. Chemistry 2017, 23, 6570.  doi: 10.1002/chem.201605702

    47. [47]

      Tang, Q.; Si, W.; Huang, C.; Ding, K.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. J. Mater. Chem. B 2017, 5, 1566.  doi: 10.1039/C6TB02979E

    48. [48]

      Tang, Q.; Xiao, W.; Huang, C.; Si, W.; Shao, J.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. Chem. Mater. 2017, 29, 5216.  doi: 10.1021/acs.chemmater.7b01075

    49. [49]

      Xiao, W.; Wang, P.; Ou, C.; Huang, X.; Tang, Y.; Wu, M.; Si, W.; Shao, J.; Huang, W.; Dong, X. Biomaterials 2018, 183, 1.  doi: 10.1016/j.biomaterials.2018.08.034

    50. [50]

      Hu, W.; Ma, H.; Hou, B.; Zhao, H.; Ji, Y.; Jiang, R.; Hu, X.; Lu, X.; Zhang, L.; Tang, Y.; Fan, Q.; Huang, W. ACS Appl. Mater. Interfaces 2016, 8, 12039.  doi: 10.1021/acsami.6b02721

    51. [51]

      Chen, D.; Tang, Q.; Zou, J.; Yang, X.; Huang, W.; Zhang, Q.; Shao, J.; Dong, X. Adv. Healthcare Mater. 2018, 7, 1701272.  doi: 10.1002/adhm.201701272

    52. [52]

      He, H.; Ji, S.; He, Y.; Zhu, A.; Zou, Y.; Deng, Y.; Ke, H.; Yang, H.; Zhao, Y.; Guo, Z.; Chen, H. Adv. Mater. 2017, 29.

    53. [53]

      Ramu, V.; Gautam, S.; Garai, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 1717.  doi: 10.1021/acs.inorgchem.7b02249

    54. [54]

      Wang, X.; Lin, W.; Zhang, W.; Li, C.; Sun, T.; Chen, G.; Xie, Z. J. Colloid Interface Sci. 2018, 536, 208.

    55. [55]

      Guo, Z.; Zou, Y.; He, H.; Rao, J.; Ji, S.; Cui, X.; Ke, H.; Deng, Y.; Yang, H.; Chen, C.; Zhao, Y.; Chen, H. Adv. Mater. 2016, 28, 10155.  doi: 10.1002/adma.201602738

    56. [56]

      Zhou, J.; Zhang, Y.; Yu, G.; Crawley, M. R.; Fulong, C. R. P.; Friedman, A. E.; Sengupta, S.; Sun, J.; Li, Q.; Huang, F.; Cook, T. R. J. Am. Chem. Soc. 2018, 140, 7730.  doi: 10.1021/jacs.8b04929

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    4. [4]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    8. [8]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    9. [9]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    10. [10]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    14. [14]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    17. [17]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    18. [18]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    19. [19]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    20. [20]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

Metrics
  • PDF Downloads(58)
  • Abstract views(2811)
  • HTML views(687)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return