Citation: Fang Xiaolong, Duan Ning, Zhang Min, Zhang Chunyan, Liu Rui, Zhu Hongping. Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into Methyl 3-Hydroxypropanoate[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1450-1455. doi: 10.6023/cjoc201812014 shu

Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into Methyl 3-Hydroxypropanoate

  • Corresponding author: Fang Xiaolong, xlfang@stu.xmu.edu.cn Zhu Hongping, hpzhu@xmu.edu.cn
  • Received Date: 10 December 2018
    Revised Date: 10 January 2019
    Available Online: 31 May 2019

    Fund Project: the National Natural Science Foundation for Young Scientists of China 21802010the Natural Science Foundation of Anhui Province 1808085QB48Project supported by the National Natural Science Foundation for Young Scientists of China (No. 21802010), the Natural Science Foundation of Anhui Province (No. 1808085QB48), and the Starting Grants for Young Teachers of Chizhou University (No. 2018YJRC001)the Starting Grants for Young Teachers of Chizhou University 2018YJRC001

Figures(4)

  • Ruthenium acetylacetonate and aminophosphine ligand were selected as the catalyst system and applied to the catalytic hydrogenation of dimethyl malonate into methyl 3-hydroxypropanoate. With the focus on the catalytic efficiency, the important factors with significant influences on the dimethyl malonate conversion and methyl 3-hydroxypropanoate selectivity were well discussed, including the structure and dosage of the ligand, temperature, reaction time, solvent, and so on. The results revealed that catalyst system of ruthenium acetylacetonate and o-(diphenylphosphino)aniline ligand could obtain significant catalytic results. Under the optimal reaction conditions, this catalyst system can also be applied to catalytic hydrogenation of some other esters with high efficiency.
  • 加载中
    1. [1]

      Kraus, G. A. Clean 2008, 36, 648.

    2. [2]

      Arntz, D.; Wiegand, N. US 5015789, 1991.

    3. [3]

      (a) Slaugh, L. H.; Weider, P. R. US 5256827, 1993.
      (b) Powell, J. B.; Mullin, S. B.; Weider, P. R.; Eubanks, D. C.; Arhancet, J. P. US 5770776, 1998.

    4. [4]

      (a) Kaur, G.; Srivastava, A. K.; Chand, S. Biochem. Eng. J. 2012, 64, 106.
      (b) Lee, C. S.; Aroua, M. K.; Daud, W. M. A. W.; Cognet, P.; Pérès-Lucchese, Y.; Fabre, P. L.; Reynes, O.; Latapie, L. Renewable Sustainable Energy Rev. 2015, 42, 963.

    5. [5]

      (a) Wang, Y.; Zhou, J.; Guo, X. RSC Adv. 2015, 5, 74611.
      (b) Sun, D.; Yamada, Y.; Sato, S.; Ueda, W. Appl. Catal. B Environ. 2016, 193, 75.

    6. [6]

      (a) Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal. 2008, 257, 172.
      (b) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
      (c) Peng, S. Y.; Xu, Z. N.; Chen, Q. S.; Chen, Y. M.; Sun, J.; Wang, Z. Q.; Wang, M. S.; Guo, G. C. Chem. Commun. 2013, 49, 5718.
      (d) Ma, X. B.; Chi, H. W.; Yue, H. R.; Zhao, Y. J.; Xu, Y.; Lv, J.; Wang, S. P.; Gong, J. L. AIChE J. 2013, 59, 2530.

    7. [7]

      (a) Ding, T.; Tian, H.; Liu, J.; Wu, W.; Zhao, B. Catal. Commun. 2016, 74, 10.
      (b) Ding, T.; Tian, H.; Liu, J.; Wu, W.; Yu, J. Chin. J. Catal. 2016, 37, 484.

    8. [8]

      (a) He, L.; Gong, X.; Ye, L.; Duan, X.; Yuan, Y. J. Energy Chem. 2016, 25, 1038.
      (b) Yu, J.; Cao, J.; Du, L.; Wei, Y.; Wang, T.; Tian, H. Appl. Catal., A 2018, 555, 161.

    9. [9]

      (a) Zhao, B. G.; Han, Z. B.; Ding, K. L. Angew. Chem., Int. Ed. 2013, 52, 4744.
      (b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
      (c) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.

    10. [10]

      Li, W.; Xie, J. H.; Yuan, M. L.; Zhou, Q. L. Green Chem. 2014, 16, 4081.  doi: 10.1039/C4GC00835A

    11. [11]

      Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.  doi: 10.1002/anie.201207781

    12. [12]

      (a) Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K. H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.
      (b) Tan, X.; Wang, Q.; Liu, Y.; Wang, F.; Lv, H.; Zhang, X. Chem. Commun. 2015, 51, 12193.

    13. [13]

    14. [14]

      Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675.  doi: 10.1021/ja00114a043

    15. [15]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.

    16. [16]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.

    17. [17]

      (a) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.
      (b) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.

    18. [18]

      Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Geilen, F. M. A.; Engendahl, B.; H lscher, M.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2011, 133, 14349.  doi: 10.1021/ja2034377

    20. [20]

      (a) Van der Sluys, L. S.; Kubas, G. J.; Caulton, K. G. Organometallics 1991, 10, 1033.
      (b) Chen, Y. Z.; Chan, W. C.; Lau, C. P.; Chu, H. S.; Lee, H. L.; Jia, G. Organometallics 1997, 16, 1241.

    21. [21]

      Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700.  doi: 10.1021/ja065460s

    22. [22]

      Mirza, C.; Christian, B.; Bernhard, R.; Wolfgang, A. H.; Fritz, E. K. Angew. Chem., Int. Ed. 2011, 50, 8510.  doi: 10.1002/anie.201102010

    23. [23]

      Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240.  doi: 10.1021/ja1117254

    24. [24]

      (a) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.
      (b) Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K. H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.

    25. [25]

      (a) Herd, O.; Heß ler, A.; Hingst, M.; Tepper, M.; Stelzer, O. J. Organomet. Chem. 1996, 522, 69.
      (b) Hingst, M.; Tepper, M.; Stelzer, O. Eur. J. Inorg. Chem. 1998, 1998, 73.
      (c) Habtemariam, A.; Watchman, B.; Potter, B. S.; Palmer, R.; Parsons, S.; Parkin, A.; Sadler, P. J. J. Chem. Soc., Dalton Trans. 2001, 1306.
      (d) Doherty, S.; Knight, J. G.; Scanlan, T. H.; Elsegood, M. R. J.; Clegg, W. J. Organomet. Chem. 2002, 650, 231.
      (e) Han, F. B.; Zhang, Y. L.; Sun, X. L.; Li, B. G.; Guo, Y. H.; Tang, Y. Organometallics 2008, 27, 1924.
      (f) Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J. L. Chem. Commun. 2014, 50, 593.

  • 加载中
    1. [1]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    2. [2]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    3. [3]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(13)
  • Abstract views(1673)
  • HTML views(317)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return