Citation: Zhou Wenjing, Liu Zhiqian, Wang Zhiping, Hu Sifan, Liang Aihui. Application of Light-Emitting Electrochemical Cells Based on Cyclometalated Iridium Complexes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1214-1225. doi: 10.6023/cjoc201812010 shu

Application of Light-Emitting Electrochemical Cells Based on Cyclometalated Iridium Complexes

  • Corresponding author: Liang Aihui, lah14god@163.com
  • Received Date: 8 December 2018
    Revised Date: 16 January 2019
    Available Online: 31 May 2018

    Fund Project: the China Postdoctoral Science Foundation 2016M592111the China Postdoctoral Science Foundation 2018T110659the National Natural Science Foundation of China 51403088the National Natural Science Foundation of China 51763013Project supported by the National Natural Science Foundation of China (Nos. 51763013, 51403088) and the China Postdoctoral Science Foundation (Nos. 2018T110659, 2016M592111)

Figures(2)

  • Light-emitting electrochemical cells (LECs), which contain ionic compounds in the light-emitting layer, have attracted considerable interest for their solid-statelighting and next generation display applications. Compared with conventional organic light-emitting diodes (OLEDs), LECs contain simple device architecture (generally only one light- emitting layer), and can use air-stable metals (e.g. Al, Ag and Au) as the cathodes directly. In particular, LECs based on ionic transition metal complexes (iTMCs) have received more attention because of their several advantages over conventional polymer-based LECs. For iTMCs-based LECs, no inorganic salt or ion-conducting polymer is needed because iTMCs are intrinsically ionic. Higher efficiency is expected for iTMCs-based LECs because iTMCs emit efficient phosphorescence at room temperature as they can harvest both singlet and triplet excitons. Compared to other iTMCs, ionic iridium complexes have been widely utilized in optoelectronics, owing to their relevant luminescent properties, such as high emission quantum yields, stability and easy tunability of the emission color. The recent research progress of iridium complexes applied in LECs, including their synthesis, structural characterization and optoelectronic properties is summarized. This review mainly focuses on the development of ionic iridium complex-based LECs with different light-emitting colors and the improvement of device performances. In addition, the future directions of iridium complexes in LECs are also discussed.
  • 加载中
    1. [1]

      Gao, F. G.; Bard, A. J. Chem. Mater. 2002, 14, 3465.  doi: 10.1021/cm020117h

    2. [2]

      Wang, Y. M.; Teng, F.; Hou, Y. B.; Xu, Z.; Wang, Y. S.; Fu, W. F. Appl. Phys. Lett. 2005, 87, 220.
       

    3. [3]

      Liu, C. Y.; Bard, A. J. Anal. Chem. 2005, 77, 5339.  doi: 10.1021/ac050389e

    4. [4]

      Chen, S.-Q.; Da, J.; Zhou, K. F.; Luo, Y. J.; Su, S. J.; Pu, X. M.; Huang, Y.; Lu, Z. Y. Acta Chim. Sinica 2017, 75, 367(in Chinese).
       

    5. [5]

      Zhou, L.-X.; Liu, S. J.; Zhao, Q.; Ling, Q. D.; Huang, W. Prog. Chem. 2011, 23, 1871(in Chinese).

    6. [6]

      Pei, Q.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science 1995, 269, 1086.  doi: 10.1126/science.269.5227.1086

    7. [7]

      Slinker, J. D.; DeFranco, J. A.; Jaquith, M. J.; Silveira, W. R.; Zhong, Y. W.; Moran-Mirabal, J. M.; Craighead, H. G.; Abru a, H. D.; Marohn, J. A.; Malliaras, G. G. Nat. Med. 2007, 6, 894.
       

    8. [8]

      Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763.  doi: 10.1021/ja0345221

    9. [9]

      Sun, L. F.; Galan, A.; Ladouceur, S.; Slinker, J. D.; Zysman-Colman, E. J. Mater. Chem. 2011, 21, 18083.  doi: 10.1039/c1jm12984h

    10. [10]

      Chen, H. F.; Wu, C.; Kuo, M. C.; Thompson, M. E.; Wong, K. T. J. Mater. Chem. 2012, 22, 9556.  doi: 10.1039/c2jm30443k

    11. [11]

      Zhang, J.; Zhou, L.; Al-Attar, H. A.; Shao, K. Z.; Wang, L.; Zhu, D. X.; Su, Z. M.; Bryce, M. R.; Monkman, A. P. Adv. Funct. Mater. 2013, 23, 4667.
       

    12. [12]

      Hu, T.; Duan, L.; Qiao, J.; He, L.; Zhang, D. Q.; Wang, L. D.; Qiu, Y. Synth. Met. 2013, 163, 33.  doi: 10.1016/j.synthmet.2012.12.017

    13. [13]

      Ertl, C. D.; Momblona, C.; Pertegás, A.; Junquera-Hernández, J. M.; La-Placa, M. G.; Prescimone, A.; Ortí, E.; Housecroft, C. E.; Constable, E. C.; Bolink, H. J. J. Am. Chem. Soc. 2017, 139, 3237.  doi: 10.1021/jacs.6b13311

    14. [14]

      Matteucci, E.; Baschieri, A.; Mazzanti, A.; Sambri, L.; vila, J.; Pertegás, A.; Bolink, H. J.; Monti, F.; Leoni, E.; Armaroli, N. Inorg. Chem. 2017, 56, 10584.  doi: 10.1021/acs.inorgchem.7b01544

    15. [15]

      Martínez-Alonso, M.; Cerdá, J.; Momblona, C.; Pertegás, A.; Junquerahernández, J. M.; Heras, A.; Rodríguez, A. M.; Espino, G.; Bolink, H.; Ortí, E. Inorg. Chem. 2017, 56, 10298.  doi: 10.1021/acs.inorgchem.7b01167

    16. [16]

      Namanga, J. E.; Gerlitzki, N.; Mallick, B.; Mudring, A. V. J. Mater. Chem. C. 2017, 5, 3409.

    17. [17]

      Yeonah, J.; Sunesh, C. D.; Chitumalla, R. K.; Jang, J.; Choe, Y. Org. Electron. 2018, 54, 167.  doi: 10.1016/j.orgel.2017.12.035

    18. [18]

      Xu, W. J.; Liu, S. J.; Ma, T. C.; Zhao, Q.; Pertegás, A.; Tordera, D.; Bolink, H. J.; Ye, S. H.; Liu, X. M.; Sun, S. J. Mater. Chem. 2011, 21, 13999.  doi: 10.1039/c1jm11987g

    19. [19]

      Kessler, F.; Costa, R. D.; Di, C. D.; Scopelliti, R.; Ortí, E.; Bolink, H. J.; Meier, S.; Sarfert, W.; Gr tzel, M.; Nazeeruddin, M. K. Dalton Trans. 2012, 41, 180.  doi: 10.1039/C1DT10698H

    20. [20]

      Sunesh, C. D.; Mathai, G.; Cho, Y. R.; Choe, Y. Polyhedron 2013, 57, 77.  doi: 10.1016/j.poly.2013.04.029

    21. [21]

      Sunesh, C. D.; Choe, Y. Mater. Chem. Phys. 2015, 156, 206.  doi: 10.1016/j.matchemphys.2015.03.001

    22. [22]

      Zeng, Q.-Y.; Li, F. S.; Guo, T. L.; Shan, G. G.; Su, Z. M. Sci. Rep. 2016, 6, 27613.  doi: 10.1038/srep27613

    23. [23]

      Jeon, Y.; Sunesh, C. D.; Chitumalla, R. K.; Jang, J.; Choe, Y. Electrochim. Acta 2016, 195, 112.  doi: 10.1016/j.electacta.2016.02.138

    24. [24]

      Jo, S.; Choe, Y. S. Mol. Cryst. Liq. Cryst. 2017, 654, 221.  doi: 10.1080/15421406.2017.1358049

    25. [25]

      Mydlak, M.; Bizzarri, C.; Hartmann, D.; Sarfert, W.; Schmid, Günter; Cola, L. D. Adv. Funct. Mater. 2010, 20, 1812.  doi: 10.1002/adfm.201000223

    26. [26]

      Yang, C. H.; Beltran, J.; Lemaur, V.; Cornil, J.; Hartmann, D.; Sarfert, W.; Fr hlich, R.; Bizzarri, C.; Cola, L. D. Inorg. Chem. 2010, 49, 9891.  doi: 10.1021/ic1009253

    27. [27]

      He, L.; Duan, L.; Qiao, J.; Zhang, D. Q.; Wang, L. D.; Qiu, Y. Chem. Commun. 2011, 47, 6467.  doi: 10.1039/c1cc11263e

    28. [28]

      Hu, T.; Duan, L.; Qiao, J.; He, L.; Zhang, D.; Wang, R.; Wang, L.; Qiu, Y. Org. Electron. 2012, 13, 1948.  doi: 10.1016/j.orgel.2012.06.005

    29. [29]

      Chen, B.; Li, Y.; Yang, W.; Luo, W.; Wu, H. Org. Electron. 2011, 12, 766.  doi: 10.1016/j.orgel.2011.02.006

    30. [30]

      Tordera, D.; Constable, E. C.; Zampese, J. A.; Housecroft, C. E.; Bolink, H. J. Chem.-Eur. J. 2013, 19, 8597.  doi: 10.1002/chem.v19.26

    31. [31]

      Constable, E. C.; Ertl, C. D.; Housecroft, C. E.; Zampese, J. A. Dalton. Trans. 2014, 43, 5343.  doi: 10.1039/C3DT53626B

    32. [32]

      Wongkaew, P.; Mahanitipong, U.; Wongsang, N.; Sahasithiwat, S.; Jitchati, R. e-J. Surf. Sci. Nanotechnol. 2014, 12, 141.  doi: 10.1380/ejssnt.2014.141

    33. [33]

      Fernández-Hernández, J. M.; Ladouceur, S.; Shen, Y.; Iordache, A.; Wang, X.; Donato, L.; Gallagherduval, S.; Villa, M. D. A.; Slinker, J. D.; Cola, L. D. J. Mater. Chem. C 2013, 1, 7440.  doi: 10.1039/c3tc31307g

    34. [34]

      Meier, S. B.; Sarfert, W.; Junquera-Hernandez, J. M.; Delgado, M.; Tordera, D.; Orti, E.; Bolink, H. J.; Kessler, F.; Scopelliti, R.; Graetzel, M.; Nazeeruddin, M. K.; Baranoff, E. J. Mater. Chem. C 2013, 1, 58.  doi: 10.1039/C2TC00251E

    35. [35]

      Sunesh, C. D.; Mathai, G.; Choe, Y. Org. Electron. 2014, 15, 667.  doi: 10.1016/j.orgel.2013.12.026

    36. [36]

      Evariste, S.; Sandroni, M.; Rees, T.; Roldancarmona, C.; Gilescrig, L.; Bolink, H.; Baranoff, E.; Zysmancolman, E. J. Mater. Chem. C 2014, 2, 5793.  doi: 10.1039/C4TC00542B

    37. [37]

      Lan, Y.; Li, G.; Zhen, W.; He, Y.; Liu, Y.; He, L. Dyes Pigm. 2017, 144, 158.  doi: 10.1016/j.dyepig.2017.05.027

    38. [38]

      Namanga, J. E.; Gerlitzki, N.; Mudring, A. V. Adv. Funct. Mater. 2017, 27, 1605588.  doi: 10.1002/adfm.v27.17

    39. [39]

      Yang, Y.; Pei, Q. J. Appl. Phys. 1997, 81, 3294.  doi: 10.1063/1.364313

    40. [40]

      He, L.; Qiao, J.; Duan, L.; Dong, G.; Zhang, D.; Wang, L.; Qiu, Y. Adv. Funct. Mater. 2009, 19, 2950.  doi: 10.1002/adfm.v19:18

    41. [41]

      He, L.; Duan, L.; Qiao, J.; Dong, G.; Wang, L.; Qiu, Y. Chem. Mater. 2010, 22, 3535.  doi: 10.1021/cm100993j

    42. [42]

      Wu, H. B.; Chen, H. F.; Liao, C. T.; Su, H. C.; Wong, K. T. Org. Electron. 2012, 13, 483.  doi: 10.1016/j.orgel.2011.12.011

    43. [43]

      Su, H. C.; Chen, H. F.; Chen, P. H.; Lin, S. W.; Liao, C. T.; Wong, K. T. J. Mater. Chem. 2012, 22, 22998.  doi: 10.1039/c2jm35483g

    44. [44]

      Wu, J.; Li, F.; Zeng, Q.; Nie, C.; Ooi, P. C.; Guo, T.; Shan, G.; Su, Z. Org. Electron. 2016, 28, 314.  doi: 10.1016/j.orgel.2015.11.014

    45. [45]

      Nishikitani, Y.; Suga, K.; Uchida, S.; Nishimura, S.; Oyaizu, K.; Nishide, H. Org. Electron. 2017, 51, 168.  doi: 10.1016/j.orgel.2017.09.003

    46. [46]

      Nishikitani, Y.; Cho, T.; Uchida, S.; Nishimura, S.; Oyaizu, K.; Nishide, H. ChemPlusChem 2018, 83, 463.  doi: 10.1002/cplu.201800198

    47. [47]

      Bolink, H. J.; Cappelli, L.; Coronado, E.; Gr tzel, M.; Ortí, E.; Costa, R. D.; Viruela, P. M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2006, 128, 14786.  doi: 10.1021/ja066416f

    48. [48]

      Kwon, T. H.; Yong, H. O.; Shin, I. S.; Hong, J. I. Adv. Funct. Mater. 2009, 19, 711.  doi: 10.1002/adfm.v19:5

    49. [49]

      Shin, I. S.; Lim, H. C.; Oh, J. W.; Lee, J. K.; Kim, T. H.; Kim, H. Electrochem. Commun. 2011, 13, 64.  doi: 10.1016/j.elecom.2010.11.014

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(15)
  • Abstract views(907)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return